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Abstract. Anderson Acceleration (AA) is a popular technique for speeding up convergence of iterative processes
towards their limit points. AA proceeds by extrapolating a better approximation of the limit using
a weighted combinations of previous iterates. Whereas AA was originally developed for accelerating
convergence of iterative methods for solving linear systems, simple additional stabilization strategies
allow it to extrapolate the solution of nonlinear systems as well. In this work, we study a constrained
version of AA for solving nonlinear systems arising in optimization problems, where the stabilization
strategy consists in bounding the magnitude of the extrapolation weights. We provide explicit
convergence bounds for constrained AA, and as a byproduct, upper bounds on a constrained version
of the Chebyshev problem on polynomials.
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1. Introduction. Let F : Rn → Rn be an operator and consider the problem of finding
its fixed point, i.e. a solution x∗ ∈ Rn to

(1.1) x∗ = F (x∗).

When F is a contraction, one can find such a point by running fixed point iterations

xk+1 = F (xk)

starting from an initial guess x0 ∈ Rn. Obtaining faster convergence rates has been a key
concern in numerical analysis. Anderson acceleration methods extrapolate a new point hope-
fully closer to the solution using a linear combination of fixed point iterates xk. This idea
was first applied to univariate sequences, fitting a linear model on the iterates and using the
fixed point of this model as the extrapolated point [1, 37, 6, 8]. Extrapolation techniques were
then extended to linearly converging vector valued sequences [2, 31, 39, 40] with convergence
guarantees in the linear case, i.e. when F is an affine operator.

In the nonlinear case (i.e. when F is not an affine operator), convergence results can also
be derived using a perturbation argument. However, the weights used to construct extrap-
olated points are typically obtained by solving ill conditioned quadratic programs, resulting
in stability issues. The magnitudes of these weights typically blow up, breaking convergence
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properties of the acceleration procedure (see examples in e.g. [35, Figure 4]). Therefore, con-
vergence guarantees in the nonlinear case mostly rely on additional mechanisms for controlling
magnitudes of extrapolation weights.

1.1. Preliminaries.
Notations. Depending on the context ‖ · ‖ either denotes the classical Euclidean norm

(when applied to a vector in Rn), or the operator norm (when applied to a matrix in Rn×n).
For B ⊂ Rn, diam(B) = maxx,y∈B ‖x− y‖. We denote by S+

n the cone of symmetric positive
semidefinite matrices of dimension n and by Sp(A) ∈ C the set of eigenvalues of a matrix A.
For k ∈ N, Rk[X] is the vector space of polynomials of degree smaller than k, and real
coefficients. We denote by ‖ · ‖1 either the sum of the absolute values of the components of a
vector (standard `1 norm when applied on Rn) or, when applied to a polynomial, the sum of
the absolute values of its coefficients. Finally, I denotes the identity operator.

We study the linear convergence of a constrained Anderson acceleration scheme on an
operator F : Rn → Rn. In recent applications of Anderson extrapolation in optimization,
F is typically a gradient step with constant step size (e.g.,[35, 22]). We use two types of
assumptions on F throughout.

Assumption 1.1. F is ρ-Lipschitz with ρ < 1, and can be decomposed as

F = G+ ξ

for a linear G ∈ S+
n with G 4 ρI and a nonlinear ξ : Rn → Rn α-Lipschitz with α ≥ 0.

Assumption 1.2. F is ρ-Lipschitz with ρ < 1 and is continuously differentiable with positive
semidefinite and η-Lipschitz Jacobian F ′ where η ≥ 0.

The ρ-Lipschitzness assumption implies that F has a unique fixed point x∗ and the iterates
of the fixed point iterations xk+1 = F (xk) satisfy ‖xk+1 − xk‖ ≤ ρ‖xk − xk−1‖ and xk → x∗.
The second assumption implies that for x0 ∈ Rn and a compact set B ⊂ Rn containing x0,
one can decompose F as F = G + ξ with G = F ′(x0) and ξ = F − F ′(x0). Moreover ξ is
locally Lipschitz over B with Lispchitz constant roughly equal to η diam(B), decreasing with
the diameter of B. Note that Assumption 1.2 does not enforce Assumption 1.1 to hold as it
implies local Lipschitzness.

Remark 1.3. We illustrate these assumptions in the optimization setting.
• When f : Rn → R is a quadratic function with µI � ∇2f � LI and 0 < µ ≤ L,

the gradient step operator F = I − 1
L∇f is affine and satisfies Assumption 1.1 with

ρ =
(
1− µ

L

)
and ξ = 0.

• When f : Rn → R is a C2, µ-strongly convex function with L-Lipschitz gradient for
0 < µ ≤ L, and η-Lipschitz Hessian, the gradient step operator F = I − 1

L∇f is
nonlinear and satisfies Assumption 1.2 with ρ =

(
1− µ

L

)
(see e.g., [33]).

We focus on a fixed depth version of Anderson acceleration. For a predetermined constant
k ∈ N, this simple method consists in performing k + 1 fixed point iterations with F and use
these k + 1 iterates to get an extrapolated point. We can then restart the method at the
extrapolated point. The extrapolated solution is obtained by solving a quadratic program
with a bound on the `1 norm of extrapolation weights. This choice of norm is motivated by
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Algorithm 1.1 Constrained Anderson Acceleration

Input:
- x0 ∈ Rn, initial guess.
- Contractive operator F .
- C ≥ 1, bound on the extrapolation weights.
- k ∈ N∗, a constant controlling the number of iterates used in extrapolation.

for i = 0, . . . , k do
xi+1 = F (xi)

end for
Form R =

[
x0 − x1 · · · xk − xk+1

]
and compute

(1.2) c̃ = argmin
1T c=1, ‖c‖1≤C

‖Rc‖

Output: Extrapolated point xe =
∑k

i=0 c̃ixi.

a tightness result derived in Theorem 3.9, but any norm would lead to similar developments.
The procedure is described in Algorithm 1.1.

In practice, k is set to a small constant (e.g. 5 or 10) and Algorithm 1.1 is restarted by
plugging the extrapolated output as input (see e.g., [36]) for a new run of the method. The
linearly constrained quadratic subproblem in (1.2) for computing the extrapolation weights is
low dimensional and can be easily solved by e.g., interior-point methods.

We look at convergence bounds of the form ‖F (xe) − xe‖ ≤ ρ̃‖F (x0) − x0‖, where xe is
the output of Algorithm 1.1 started at x0 and the quantity ‖F (x)− x‖ controls how far x is
from being a fixed point of F . This choice allows to chain together the convergence guarantees
for consecutive run of Algorithm 1.1. When F satisfies Assumption 1.1 we always have that
‖F (xk) − xk‖ ≤ ρk‖F (x0) − x0‖ hence we consider that extrapolation provides convergence
acceleration as soon as ρ̃ < ρk

1.2. Related work. Several recent results have been focused on improving convergence
guarantees for acceleration methods. In [35], the authors apply a regularized formulation
of Anderson extrapolation in an optimization setting. Regularization yields accelerated lin-
ear convergence rates in some asymptotic regimes, without any additional hypothesis on the
independence of the residuals. [7] also proposes a stabilized version guaranteeing local lin-
ear acceleration without any linear independence hypothesis but with an assumption on the
conditioning of the Jacobian.

Acceleration mechanisms, and Anderson acceleration in particular, have a strong link
with quasi-Newton methods [12, 32]. A variant of Anderson acceleration called the DIIS
procedure has been studied in [32] and yields accelerated local linear convergence under a
linear independence hypothesis on differences of consecutive residuals and an hypothesis on
the conditioning of the Jacobian of I−F at a fixed point x∗. The idea of imposing a sufficient
linear independence condition on the difference of the residuals is also present in [29]. It
has also been shown in [41] that when the extrapolation weights are bounded, AA is locally
linearly convergent. However, none of these conditions guarantee a priori improved linear
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convergence rates, as they are impossible to check without actually running the method.
A globally convergent modification of the DIIS procedure is proposed in [10] consisting in

using only positive weights in the extrapolation. However, using only positive weights amounts
to forming convex combination of previous iterates which severely limits acceleration. An
adaptive regularization scheme in [27] provides acceleration guarantees under boundedness
hypothesis on the extrapolation weights, extending the work of [41]. A globally converging
Anderson acceleration type algorithm is also presented in [42]; however, due to the very general
assumptions made in the paper, no convergence rate is provided. In [11], an adaptive restart
strategy yields local superlinear convergence without any assumption on conditioning, but the
region around the optimum where superlinear convergence occurs is dependent on the ambient
dimension d and its size goes to 0 when d tends to infinity.

Finally, these extrapolation methods were widely extended in the optimization community:
to the stochastic setting [34], to composite optimization problems in [24, 22], to splitting
methods [30, 15], to coordinate descent [4] and to accelerate momentum based methods in [5].

1.3. Contributions. The setting of this paper is essentially that of [35], which is more
restrictive than those of [29, 27, 7, 11] (in particular because of the symmetry assumption
on G). This setup allows proving explicit, dimension independent, worst-case local linear
convergence rates, a priori, without additional assumption on the iterates themselves, or on
the optimum.

We study a constrained Anderson acceleration (CAA) algorithm that imposes hard bounds
on the extrapolation weights as suggested in [41, Section 2.2] and [36], and provide a simple
worst-case analysis in a nonlinear setting. We do so by extending the Chebyshev arguments
of [35] to the constrained case. Overall, our contribution is threefold.

(i) We provide an explicit upper bound for the optimal value of a constrained Chebychev
problem on polynomials. We show this bound is tight on a range of parameters and
show numerically that it is close to the optimal value elsewhere.

(ii) We use this bound to construct an explicit, dimension free, worst-case local linear
convergence rate for CAA applied to nonlinear operators, and quantify this local ac-
celeration rate.

(iii) We describe an adaptive strategy to adjust the constraints on extrapolation weights,
when CAA is applied to a gradient step operator.

2. Constrained Anderson Acceleration. We first recall some standard results on Ander-
son acceleration on linear operators when α = 0 in Assumption 1.1 (or η = 0 in Assump-
tion 1.2). We then introduce constraints on the extrapolation coefficients for stabilizing the
extrapolation procedure, and deal with nonlinearities through the introduction of perturbation
parameters α > 0 in Assumption 1.1 (or η > 0 in Assumption 1.2).

2.1. Anderson Acceleration on Linear Problems. Let us consider the case α = 0 (i.e., F
is affine), where Algorithm 1.1 can be used with C =∞. We recall the well-known convergence
result on Anderson acceleration in the linear case.

Proposition 2.1. Let F be satisfying Assumption 1.1 with α = 0, xe ∈ Rn be the output of
Algorithm 1.1 initiated at some x0 ∈ Rn such that F (x0) 6= x0, and let C = ∞ and k > 0.
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We have that

‖F (xe)− xe‖
‖F (x0)− x0‖

≤ min
p∈Rk[X]
p(1)=1

max
x∈[0,ρ]

|p(x)| = ρ∗ := 2βk

1+β2k ,

with β = 1−
√
1−ρ

1+
√
1−ρ . In addition ρ∗ < ρk.

Proof. Reformulation of [35, Proposition 2.1].

In the following, α or η may be nonzero and the previous proposition does not apply.

2.2. Constrained Anderson Acceleration on Nonlinear Problems. When applying the
extrapolation step (1.2) to a nonlinear operator F , the conditioning of the matrix RTR ∈ S+

k+1

becomes an important issue. This matrix might be singular in some particular situations
(see below), but more importantly becomes very close to singular in typical situations. For
instance, when F is a gradient step operator of a smooth convex function, consecutive gradients
tend to get aligned (in particular, this can be easily formalized when F is the gradient step
operator of a convex quadratic function), leading to a very ill-conditioned RTR in that case.
Furthermore, if F is the gradient of a convex quadratic function with Hessian H � 0, and x0
is an eigenvector of H, the matrix RTR will be singular. This means the solution vector c̃ can
have coefficients with very large magnitude. When α > 0, those coefficients are multiplied
with the nonlinear part of F and can make the iterates of the algorithm diverge (see [35] for
an example of such divergence). A solution to fix this issue is to check the conditioning of
the matrix (or some related quantity) and adjust iterations depending on it (e.g. restart [11]
or discard iterates [7]). A more direct method consists in controlling the magnitude of these
coefficients, by e.g. regularizing (1.2), as in [35] (with C =∞), or by imposing hard constraints
on c̃, as we do here. Whereas regularization renders computations easier in practice, imposing
constraints makes the analysis simpler.

Proposition 2.2. Let F be an operator satisfying Assumption 1.1, α ≥ 0 and xe ∈ Rn be
the output of Algorithm 1.1 initiated at x0 ∈ Rn with C ≥ 1 and k ≥ 1. We have

(2.1) ‖F (xe)− xe‖ ≤
(

max
x∈[0,ρ]

|pC∗ (x)|+ 3Cαk

)
‖F (x0)− x0‖,

where

pC∗ ∈ argmin
p∈Rk[X]
p(1)=1
‖p‖1≤C

max
x∈[0,ρ]

|p(x)|,

and ‖p‖1 is the `1 norm of the vector of coefficients of p. In addition, under Assumption 1.2,
the bound in (2.1) holds with α = kCη‖F (x0)− x0‖.

Proof. The proof mostly relies on reformulations and triangle inequalities. It is deferred
to Appendix A.

The following corollary simply states that one can allow a small relative error in the
computation of (1.2) in Algorithm 1.1 while keeping linear convergence.
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Corollary 2.3. Let F be an operator satisfying Assumption 1.1, α ≥ 0 and xe ∈ Rn be the
output of Algorithm 1.1 initiated at x0 ∈ Rn with C ≥ 1 and k ≥ 1. If (1.2) is solved with
relative precision ε‖F (x0)− x0‖ on its optimality gap for some ε > 0, that is

‖Rc‖ − ‖Rc̃‖ ≤ ε‖F (x0)− x0‖,

then

‖(F − I)xe‖ ≤
(

max
x∈[0,ρ]

|pC∗ (x)|+ 3Cαk + ε

)
‖(F − I)x0‖.

Under Assumption 1.2, this bound holds with α = kCη‖F (x0)− x0‖.
The result of Proposition 2.2 is independent of the dimension of the ambient space. More-

over, we can also get dimension dependent local superlinear convergence.

Remark 2.4. Let ρ ∈]0, 1[ and F be satisfying Assumption 1.2. Let xe ∈ Rn be the output
of Algorithm 1.1 initiated at x0 ∈ Rn with C ≥ 1 and k ≥ 1. A slight modification in the
proof of Proposition 2.2 yields

‖F (xe)− xe‖ ≤

 min
p∈Rk[X]

p(1)=1,‖p‖1≤C

‖p(G)‖+ 3C2ηk2‖F (x0)− x0‖

 ‖F (x0)− x0‖.

Let λ1, . . . , λn ∈ [0, ρ[ be the eigenvalues of G, when C ≥ (1+ρ)n

(1−ρ)n the polynomial χ(X) =∏n
i=1(X−λi)∏n
i=1(1−λi)

satisfies χ(G) = 0, χ(1) = 1 and ‖χ‖1 ≤ C, thus for k = n

‖F (xe)− xe‖ ≤ 3C2ηn2‖F (x0)− x0‖2,

which gives local superlinear convergence. Setting k = n is of course somewhat impractical
when the ambient dimension of the problem gets large.

In the rest of the paper, we focus on convergence rates that are dimension independent.
Proposition 2.2 highlights a trade-off between (i) allowing coefficients to have larger magni-
tudes, i.e., via a large C, leading to a smaller maxx∈[0,ρ] |pC∗ (x)| that gets closer to the optimal
rate ρ∗, and (ii) diminishing C to better control the nonlinear part of F but getting a slower
rate maxx∈[0,ρ] |pC∗ (x)|, closer to ρk. In the next section, we bound maxx∈[0,ρ] |pC∗ (x)| as a
function of C, to make this trade-off explicit.

3. Constrained Chebychev Problem. The Chebyshev problem, defined in the following
theorem, is central to many results of numerical analysis. For instance, it is used to provide
convergence rates for several algorithms such as Lanczos’ method for eigenvalue computations
[16], conjugate gradients [38], Anderson acceleration, or Chebyshev iterations [17, 25, 26].

We first introduce rescaled Chebyshev polynomials, that will be used throughout the rest
of this section.

Definition 3.1. Let a < b < 1 ∈ R and k > 0, we call rescaled Chebyshev polynomial of the
first kind, of degree k, on [a, b] the polynomial

R
[a,b]
k (X) :=

Tk(
2(X−a)
b−a − 1)

|Tk(2(1−a)b−a − 1)|
,
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where Tk is the Chebyshev polynomial of the first kind, of degree k.

We recall a fundamental result on rescaled Chebyshev polynomials from [17, Section 3].

Theorem 3.2 ([17]). Let ρ ∈]0, 1[ and k > 0, we call Chebyshev problem of degree k on
[0, ρ] the following optimization problem on polynomials

(Cheb) ρ∗ := min
p∈Rk[X]
p(1)=1

max
x∈[0,ρ]

|p(x)|,

whose solution is p∗(X) = R
[0,ρ]
k (X), and ρ∗ = 2βk

1+β2k with β = 1−
√
1−ρ

1+
√
1−ρ .

Proof. For completeness, a proof of this result is provided in Appendix B.2.

The following corollary extends the result of Theorem 3.2 and will be useful at the end of this
section.

Corollary 3.3. Let ρ ∈]0, 1[, k > 0 and ε ≥ 0. It holds that

(3.1) ρε := min
p∈Rk[X]
p(1)=1

max
x∈[−ε,ρ]

|p(x)|,

whose solution is the rescaled Chebyshev polynomial R
[−ε,ρ]
k (X), and ρε = 2βkε

1+β2k
ε

with

βε = 1−
√

1− ρ+ε
1+ε

/
1 +

√
1− ρ+ε

1+ε .

Proof. The proof follows the same line as that of Theorem 3.2.

We have seen in Proposition 2.2 that we need to control the optimal value of a slightly
modified version of (Cheb) with an additional constraint on the `1 norm of the vector of
coefficients of the polynomial. Adding this constraint breaks the explicit result of Theorem 3.2
and no closed form solution for this constrained Chebyshev problem is known for arbitrary
choices of C. In this section we seek upper bounds on the optimal value to this problem.

Let k > 0 and ρ ∈]0, 1[, we are interested in the following constrained Chebyshev problem

(Cstr-Cheb) ρ̃(C) := min
p∈Rk[X]
p(1)=1
‖p‖1≤C

max
x∈[0,ρ]

|p(x)|.

Before detailing explicit upper bounds on this problem, we first explain how to compute this
ρ̃(C) numerically for C ≥ 1. Note that the feasible set is trivially empty when C < 1.

3.1. Numerical Solutions. When C ≥ 1, the problem (Cstr-Cheb) has a non empty
feasible set, and this feasible set is convex (intersection of an affine space with an `1 ball).
The objective function is a norm on Rk[X], hence is convex. The problem (Cstr-Cheb) is
equivalent to

(3.2)

ρ̃(C) = min t
p ∈ Rk[X], t ∈ R,
p(1) = 1, ‖p‖1 ≤ C,
−t ≤ p(x) ≤ t, ∀x ∈ [0, ρ].
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Figure 1. Dotted curves correspond to the fixed point iterations rate ρk, purple ones are bounds on ρ̃(C)
from (3.5) using convexity. Red curves correspond to the bound on ρ̃(C) presented in Proposition 3.13 with
M = k, blue ones correspond to numerical solutions to (3.3) (i.e., numerical value of ρ̃(C)) and the dashed
ones to accelerated rate ρ∗ defined in (Cheb). On x-axis C goes from 1 to C∗ defined in (3.4). Top : ρ = 0.9.
Bottom: ρ = 0.999. Left: k = 3. Middle: k = 5. Right: k = 8.

This problem involves polynomial positivity constraints on a bounded interval. A classical
argument to transform this local positivity into positivity on R uses the following change of
variable.

p(x) ≥ 0 ∀x ∈ [0, ρ] ⇐⇒ (1 + x2)kp
(
ρ x2

1+x2

)
≥ 0 ∀x ∈ R.

Positivity constraints for univariate polynomials can be expressed using a sum of squares
(SOS) formulation [28, 19] (see e.g., [21, Theorem 1] for a short proof). Standard packages
can be used to solve the following reformulation of (3.2) with SOS constraints.

(3.3)

ρ̃(C) = min t
p ∈ Rk[X], t ∈ R,
p(1) = 1, ‖p‖1 ≤ C,
(1 + x2)kp(ρ x2

1+x2
) + (1 + x2)kt ≥ 0 ∀x ∈ R,

(1 + x2)kt− (1 + x2)kp(ρ x2

1+x2
) ≥ 0 ∀x ∈ R.

We used YALMIP [20] and MOSEK [3] and numerical solutions to (3.3) are detailed in Figure 1
(in blue) for a few values of ρ and k.

3.2. Exact and Upper Bounds. The main goal of this section is to provide an explicit
upper bound for the function ρ̃(C) defined in (Cstr-Cheb), which we later combine with the
result of Proposition 2.2.

3.2.1. Naive Upper Bound and Base Properties. We start by presenting a property of
the function ρ̃ that will be very useful to stitch together several upper bounds that will be
derived on ρ̃ in what follows.
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Proposition 3.4. The function ρ̃ defined in (Cstr-Cheb) is convex on [1,+∞[.

Proof. Let C0, C1 ∈ [1,+∞[ and t ∈ [0, 1], when p0 and p1 are feasible points for problem
(Cstr-Cheb) with C equal to C0 and C1, then (1−t)p0+tp1 is feasible for problem (Cstr-Cheb)
with C = (1− t)C0 + tC1. Thus, by convexity of the objective function we have that ρ̃((1−
t)C0 + tC1) ≤ (1− t)ρ̃(C0) + tρ̃(C1).

We write C∗ the `1-norm of the rescaled Chebyshev polynomial p∗ = R
[−0,ρ]
k of Theo-

rem 3.2, i.e.

(3.4) C∗ = ‖R[−0,ρ]
k ‖1, where R

[−0,ρ]
k solves (Cheb).

We start with a few observations on the behaviour of ρ̃ at the boundaries of its domain.

Remark 3.5. From Theorem 3.2, when C is larger than C∗, problem (Cstr-Cheb) becomes
unconstrained and ρ̃(C) is constant equal to ρ∗.

Remark 3.6. When C = 1, the feasible set of (Cstr-Cheb) consists only of convex combi-
nations of monomials of degree smaller than k. Among them, Xk has the minimal absolute
value on [0, ρ] and ρ̃(1) = ρk.

Based on the two previous remarks and Proposition 3.4 we obtain a first natural upper
bound on ρ̃ written

(3.5) ρ̃(C) ≤ C∗−C
C∗−1 ρ

k + C−1
C∗−1ρ∗, for C ∈ [1, C∗].

This is a very coarse upper bound since C∗ >> 1. Indeed we can observe in Figure 1 that
there is an important gap between ρ̃ and the coarse upper bound from (3.5) that is displayed
in purple. Bellow, we show that using a refined set of sample points in [1, C∗] along with
convexity of ρ̃ allows obtaining more precise upper bounds.

3.2.2. Behaviour for C Close to 1. It turns out that when C is close to 1, the behaviour
of ρ̃(C) can be explicitly characterized. Indeed, in the next lemma we provide an explicit
expression for ρ̃(C) when C is in an explicit neighbourhood of 1.

Lemma 3.7. Let C1 = 2+ρk

2−ρk , for C ∈ [1, C1] we have the following expression for ρ̃

ρ̃(C) = C+1
2 ρk − C−1

2 .

Proof. Let us show that p(X) = C+1
2 Xk − C−1

2 solves of (Cstr-Cheb). First notice that
p is feasible as ‖p‖1 = C and p(1) = 1. In addition, since p is increasing on [0, ρ], |p| reach
its maximum on the boundary and max

x∈[0,ρ]
|p(x)| = max(|p(ρ)|, |p(0)|) = p(ρ) = C+1

2 ρk − C−1
2

using that C ∈ [1, 2+ρ
k

2−ρk ].

Let q be another feasible polynomial such that q =
∑k

i=0 qiX
i,
∑k

i=0 qi = 1 and
∑k

i=0 |qi| ≤
C. We show that |q(ρ)| ≥ |p(ρ)|. First we have that

q(ρ) =
∑
qi≥0

qiρ
i +

∑
qi≤0

qiρ
i ≥

∑
qi≥0

qiρ
k +

∑
qi≤0

qi =
∑
qi≥0

qiρ
k +

1−
∑
qi≥0

qi

 .
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In addition, one notices that
∑

qi≥0 qi −
∑

qi≤0 qi =
∑k

i=0 |qi| ≤ C thus using that
∑

qi≤0 qi =

1−
∑

qi≥0 qi, we obtain
∑

qi≥0 qi ≤
C+1
2 , and

q(ρ) ≥ C+1
2 (ρk − 1) + 1 = p(ρ) > 0.

Thus |q(ρ)| = q(ρ) ≥ p(ρ) = max
x∈[0,ρ]

|p(x)|. Then max
x∈[0,ρ]

|q(x)| ≥ max
x∈[0,ρ]

|p(x)| so p is an optimal

solution of (Cstr-Cheb).

Using Remark 3.5 and Lemma 3.7, we can obtain exact expression for ρ̃ when k = 1.

Remark 3.8. For k = 1, we have C∗ = 2+ρ
2−ρ = C1 and

ρ̃(C) =

{ C+1
2 ρk − C−1

2 for C ∈ [1, C1]
2

2−ρ for C ≥ C1
.

We can also give an explicit form for solutions of (Cstr-Cheb) in a neighborhood of C∗ as
detailed below.

3.2.3. Behaviour for C Around C∗. In this section, we show that solutions to the Cheby-
shev problem with light constraints (C close to C∗) are also rescaled Chebyshev polynomials
(see Definition 3.1) on a segment [−ε, ρ] instead of [0, ρ], with ε ≥ 0.

Theorem 3.9. Let ρ ∈]0, 1[, k > 0 and

ε̃ = ρ
1+cos(

2k−1
2k π)

1−cos( 2k−12k π)
.

For any ε ∈ [0, ε̃] we have

R
[−ε,ρ]
k ∈ argmin

p∈Rk[X], p(1)=1

‖p‖1≤
∥∥∥R[−ε,ρ]

k

∥∥∥
1

max
x∈[0,ρ]

|p(x)|,

which implies

ρ̃
(∥∥∥R[−ε,ρ]

k

∥∥∥
1

)
= max

x∈[−ε,ρ]

∣∣∣R[−ε,ρ]
k (x)

∣∣∣ .
Proof. We present a proof sketch, and refer to Appendix C for a complete argument.

Assume that R
[−ε,ρ]
k is not a global minimum of the convex problem in (Cstr-Cheb), R

[−ε,ρ]
k

is not a local solution either, hence we can find h ∈ Rk[X] 6= 0 with small enough norm such
that

(i) ‖R[−ε,ρ]
k + h‖1 ≤ ‖R[−ε,ρ]

k ‖1 and h(1) = 0 (i.e. R
[−ε,ρ]
k + h feasible),

(ii) maxx∈[0,ρ] |R
[−ε,ρ]
k (x) + h(x)| < maxx∈[0,ρ] |R

[−ε,ρ]
k (x)| (i.e. R

[−ε,ρ]
k + h has a smaller

objective value).

Due to the particular form of R
[−ε,ρ]
k (i.e. equioscillation of Chebyshev Polynomials recalled

in Lemma B.3), conditions (i) and (ii) on h imply that it has k roots in ]0, 1]. Thus h keeps
the same sign on ]−∞, 0] (which is (−1)k), so (−1)kh(−1) > 0.
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We then choose ε̃ such that for all ε ∈ [0, ε̃], the roots of R
[−ε,ρ]
k are nonnegative, and show

that this forces the coefficients (ci)i of R
[−ε,ρ]
k to alternate signs (in particular ci the coefficient

of degree i has sign (−1)k+i).

For h(x) =
∑k

i=0 hix
i with norm small enough we can write ‖R[−ε,ρ]

k + h‖1 = ‖R[−ε,ρ]
k ‖1 +∑k

i=0 sign(ci)hi = ‖R[−ε,ρ]
k ‖1 +

∑k
i=0(−1)k+ihi = ‖R[−ε,ρ]

k ‖1 + (−1)kh(−1) and (ii) leads to

(−1)kh(−1) ≤ 0, providing a contradiction. Therefore, R
[−ε,ρ]
k has to be a global minimum.

As mentioned in this proof, the coefficients of R
[−ε,ρ]
k for ε ∈ [0, ε̃] have alternating signs,

so
∥∥∥R[−ε,ρ]

k

∥∥∥
1

is in fact |R[−ε,ρ]
k (−1)|. This relation is key in the proof of the previous theorem,

and is the main motivation behind the choice of the `1 norm on coefficients (versus e.g. `2).

Furthermore, this yields a somewhat simple expression for
∥∥∥R[−ε,ρ]

k

∥∥∥
1
, as follows.

Lemma 3.10. Let ρ ∈]0, 1[, and k > 0. For any ε ∈ [0, ε̃] with

ε̃ = ρ
1+cos(

2k−1
2k π)

1−cos( 2k−12k π)
,

we have

‖R[−ε,ρ]
k ‖1 =

(
1+

ρ−ε
2 −
√

(1+ρ)(1−ε)
)k

+
(
1+

ρ−ε
2 +
√

(1+ρ)(1−ε)
)k

(
1+

ρ−ε
2 −
√

(1−ρ)(1+ε)
)k

+
(
1+

ρ−ε
2 +
√

(1−ρ)(1+ε)
)k .

Furthermore, the function ε→
∥∥∥R[−ε,ρ]

k

∥∥∥
1

is continuous and decreasing on [0, ε̃].

Proof. Using ‖R[−ε,ρ]
k ‖1 = |R[−ε,ρ]

k (−1)|, we apply the classical expression for Tk(x) with

|x| ≥ 1 (see e.g [23, Eq 1.49]) Tk(x) = 1
2

(
(x−

√
x2 − 1)k + (x+

√
x2 − 1)k

)
. Using this

formula, we arrive to (after a bit of work)

∥∥∥R[−ε,ρ]
k

∥∥∥
1

=

∣∣∣∣Tk(−2−ρ+ερ+ε )

∣∣∣∣∣∣∣∣Tk( 2−ρ+ερ+ε )

∣∣∣∣ =

(
1+

ρ−ε
2 −
√

(1+ρ)(1−ε)
)k

+
(
1+

ρ−ε
2 +
√

(1+ρ)(1−ε)
)k

(
1−ρ−ε2 −

√
(1−ρ)(1+ε)

)k
+
(
1−ρ−ε2 +

√
(1−ρ)(1+ε)

)k .
A base study of variations reveals that the numerator is decreasing and the denominator
increasing on [0, ε̃].

Remark 3.11. In particular, one can express the value of C∗ using Lemma 3.10 applied to
the unconstrained Chebyshev problem (Cheb) (ε = 0), yielding

C∗ =

(
2 + ρ− 2

√
1 + ρ

)k
+
(
2 + ρ+ 2

√
1 + ρ

)k(
2− ρ− 2

√
1− ρ

)k
+
(
2− ρ+ 2

√
1− ρ

)k .
Remark 3.12. Theorem 3.9 and Lemma 3.10 do not provide explicit expressions of ρ̃(C)

for C ∈ [C̃, C∗] with C̃ = ‖R[−ε̃,ρ]
k ‖1. Indeed, we cannot explicitly invert the relation ε →

‖R[−ε,ρ]
k ‖1. However one can get arbitrarily tight upper bounds by sampling (εi)i∈[1,M ] ∈
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[0, ε̃]. Then, one can compute Ci = ‖R[−εi,ρ]
k ‖1 explicitly using Lemma 3.10. Note that

since ε→
∥∥∥R[−ε,ρ]

k

∥∥∥
1

is continuous and decreasing on [0, ε̃], we can obtain an arbitrarily good

covering of [C̃, C∗] using the Ci. Finally, using convexity from Proposition 3.4 to interpolate
linearly between the Ci and ρ̃(Ci), provides a piecewise linear upper bound on [C̃, C∗] which
can be made arbitrarily close to ρ̃ by increasing M .

Note however that the interval [C̃, C∗] is actually quite narrow compared with [1, C∗]. We
describe the construction of upper bounds for all C ≥ 1 in the next section.

3.2.4. Construction of Upper Bounds for all Values of C . To construct an upper bounds
on ρ̃(C) for all C ∈ [1, C∗], we use the idea presented above, based on bounding ρ̃ at a finite
number of points, then using convexity to interpolate upper bounds between these points.
Given M ∈ N∗ accounting for the number of intermediate breaking points, the upper bound
is built as follows.

(i) Select M + 2 constraint parameters Ci ∈ [1, C∗] for i = 0, . . . ,M + 1 with C0 = 1,

C1 = 2+ρk

2−ρk (from Lemma 3.7) and CM+1 = C∗.

(ii) Using feasible polynomials of (Cstr-Cheb), obtain ρi such that ρ̃(Ci) ≤ ρi for i =

0, . . . ,M + 1, with ρ0 = ρk, ρ1 = ρ̃(C1) = ρk

2−ρk (from Lemma 3.7) and ρM+1 = ρ∗.

(iii) Use the lower convex hull of the (Ci, ρi) as an upper bound on ρ̃ on [1, C∗].
Note that we only focus on [1, C∗] since we know that ρ̃(C) = ρ∗ when C ≥ C∗ (see Re-
mark 3.11).

Proposition 3.13. Let k > 2 , ρ ∈]0, 1[ and M ≥ 2, (εi)i∈[2,M ] =
( ρ
2i−2

)
i∈[2,M ]

. Let

(Ci)i∈[2,M ] =
(

min
∥∥∥R[−εi,ρ]

k

∥∥∥
1
, C∗

)
i∈[2,M ]

, C0 = 1, C1 = 2+ρk

2−ρk , and CM+1 = C∗.

We denote by (ρi)i∈[2,M ] =
(

2βki
1+β2k

i

)
i∈[2,M ]

, with βi = 1−
√

1− ρ+εi
1+εi

/
1 +

√
1− ρ+εi

1+εi
, ρ0 =

ρk, ρ1 = ρk

2−ρk and ρM+1 = ρ∗. Then, we index C[i] such that 1 = C0 = C[0] ≤ C[1] ≤ . . . ≤
C[M+1] = CM+1 = C∗, and define ρ̃b on [1,+∞] as

ρ̃b(C) =


min
j,l

C[j]≤C[i]

C[l]≥C[i+1]

C−C[j]

C[l]−C[j]
ρ[l] +

C[l]−C
C[l]−C[j]

ρ[j] for C ∈ [C[i], C[i+1]]

ρ∗, for C ≥ C∗

,

which is an upper bound on ρ̃.

Proof. The values Ci =
∥∥∥R[−εi,ρ]

k

∥∥∥
1

can computed explicitly using e.g. [23, Equation 2.18]

to obtain the coefficients of Tk. If C > C∗ we saw that ρ̃(C) = ρ∗. Otherwise C is between a
C[i] and a C[i+1] and the result follows from the convexity of ρ̃.

To select the Ci in step (i), we rely on the intuition provided by Theorem 3.9 and on
numerical observations. Indeed we noticed that for a large range of ε (more precisely for
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ε ∈ [0, ρ]), max[0,ρ]

∣∣∣R[−ε,ρ]
k (x)

∣∣∣ is a good upper bound for ρ̃
(∥∥∥R[−ε,ρ]

k

∥∥∥
1

)
. Therefore, we

sample M − 1 values εi ∈ [0, ρ] and use Ci =
∥∥∥R[−εi,ρ]

k

∥∥∥
1

in step (i). Then, we set ρi =

max[0,ρ]

∣∣∣R[−εi,ρ]
k (x)

∣∣∣ (= ρεi from Corollary 3.3) in step (ii) and finally apply step (iii) to get

the upper bound. As shown in Figure 1, Proposition 3.13 provides upper bounds, represented
in red on the figure, that are close to ρ̃(C).

Setting ε2 = ρ in the previous proposition is motivated by two observations, (i) numerically

ρε = maxx∈[0,ρ] |R
[−ε,ρ]
k (x)| is close to ρ

(∥∥∥R[−ε,ρ]
k

∥∥∥
1

)
for ε ∈ [0, ρ] and diverges from it for larger

ε, (ii) we can study R
[−ρ,ρ]
k and get a relatively simple expression for ‖R[−ρ,ρ]

k ‖1 as described
below.

Lemma 3.14. Let ρ ∈]0, 1[ and k ≥ 1,

(3.6) C2 :=
∥∥∥R[−ρ,ρ]

k

∥∥∥
1

=
(1−
√

1+ρ2)k+(1+
√

1+ρ2)k

(1−
√

1−ρ2)k+(1+
√

1−ρ2)k
.

Proof. From Definition 3.1 we have R
[−ρ,ρ]
k (X) =

Tk(
X
ρ )

Tk(
1
ρ )

. Then, noticing that ‖R[−ρ,ρ]
k ‖1 =∣∣∣Tk( iρ )∣∣∣

Tk(
1
ρ )

(with i the unit imaginary number) allows to use the nice formulation for the value of

Chebyshev polynomials (see e.g., [23, Eq 1.49])

‖R[−ρ,ρ]
k ‖1 =

∣∣∣(i−(i2−ρ)1/2)k+(i−(i2−ρ)1/2)
k
)
∣∣∣

(1−
√

1−ρ2)k+(1+
√

1−ρ2)k
= C2.

In order to get more insights on how this upper bound behaves at C2, we study the regime
ρ ∼ 1.

Remark 3.15. We have

ρ2 := max
x∈[0,ρ]

|R[−ρ,ρ]
k (x)| = 2ρk

(1+
√

1−ρ2)k+(1−
√

1−ρ2)k
≤ ρk.

When ρ→ 1 we can show

1− ρk ∼ k(1− ρ), 1− ρ∗ ∼ k2(1− ρ) and 1− ρ2 ∼ k
2k−1k

2(1− ρ).

In addition,

C2 ∼ (1+
√
2)k+(1−

√
2)k

(1+
√
2)2k+(1−

√
2)2k

C∗ ≤ 1
2k
C∗.

In the bad conditioned regime where ρ ∼ 1, decreasing the constraint C by a factor 2k,
only deteriorates the convergence rate by a factor k

2k−1 .

We now, present a simpler and more practical upper bound, which corresponds to a scenario
where the Ci’s are ordered.
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Remark 3.16. Following the notations of Proposition 3.13, a simpler upper bound when
the Ci’s are ordered is

(3.7) ρ̃bo(C) :=

{
C−Ci

Ci+1−Ci ρi+1 + Ci+1−C
Ci+1−Ci ρi for C ∈ [Ci, Ci+1] and 0 ≤ i ≤M

ρ∗ for C ≥ C∗
.

Numerically
∥∥∥R[−ε,ρ]

k

∥∥∥
1

appears to be decreasing with ε, as the intuition suggests. Indeed,

when ε gets larger, the graph of R
[−ε,ρ]
k exhibits wider oscillations, which would imply a

decrease in the magnitude of its coefficients. For now, this remains a conjecture as we could
not prove it formally. Note however that for M = 2, we can show (see Appendix D) that
C0 < C1 < C2 < C3 and thus, (3.7) defines a simplified upper bound.

In the next section we use this simplified bound on the constrained Chebyshev problem
to provide explicit bounds on constrained Anderson acceleration for gradient step operators.

4. Convergence of CAA on Gradient Steps. As discussed above, combining Proposi-
tion 3.13 and Proposition 2.2 gives an explicit linear rate of convergence for one pass of
Algorithm 1.1. In what follows, we focus on applications of these results to the optimization
setting where F is an operator representing an optimization method.

100 102 104

0.96

0.98

C

100 102 104
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ρk

η‖∇f(x0)‖ = 10−2 µ
L

η‖∇f(x0)‖ = 10−3 µ
L

η‖∇f(x0)‖ = 10−4 µ
L
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η‖∇f(x0)‖ = 10−6 µ
L

η‖∇f(x0)‖ = 0
ρ∗
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Figure 2. Bounds on the convergence rate of Algorithm 1.1 with k = 5, µ = 10−3 and L = 1. Top Left:
bound from (4.1), Top Right: bound from (3.5), Bottom Left: bound from (4.2) with M = k+1. Bottom Right:
bound from (4.2) with M = 2. Note that the apparent nonconvexity of the bounds is due to the x-axis being
represented in logarithmic scale.
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4.1. Convergence Bounds. In this section, we come back to the problem of accelerating
convergence of a first-order method, and consider that F is specifically encoding a gradient
step of a function f (see e.g., [35]). It is well known (see for instance [33]) that when f is
µ-strongly convex with L-Lipschitz gradient for 0 < µ < L, F = (I − 1

L∇f) is a ρ =
(
1− µ

L

)
-

Lipschitz operator. In addition, we assume that ∇2f , the Hessian of f , is η-Lipschitz for
η > 0, which implies that F satisfies Assumption 1.2.

Given x0 ∈ Rn, Proposition 2.2 shows that the output xe of Algorithm 1.1 with k ≥ 1 and
C ≥ 1 satisfies

(4.1) ‖∇f(xe)‖ ≤
(
ρ̃(C) + 3 ηLk

2C2‖∇f(x0)‖
)
‖∇f(x0)‖,

where ρ̃ is defined in (Cstr-Cheb). When C is fixed, there are two ways of for improving
the convergence rate of CAA : (i) having a Hessian with a small Lipschitz constant η, which
means being globally close to a quadratic, or (ii) being sufficiently close to the optimum (i.e.,
‖∇f(x0)‖ small).

To make our bounds more concrete, we now combine (4.1) with the upper bound from
Proposition 3.13. For clarity, we only consider the simple upper bound from Remark 3.16.
The next proposition provides a range of values of C, depending on the perturbation param-
eter η

L2 ‖∇f(x0)‖ (which measures deviation from quadratic case), for which acceleration is
guaranteed with Algorithm 1.1 compared to the baseline convergence rate ρk after k iterations
of the fixed step gradient method.

Proposition 4.1. Let f : Rn → R be a µ-strongly convex function with L-Lipschitz gradient
and η-Lipschitz Hessian. Let xe be the output of Algorithm 1.1 with x0 ∈ Rn, k > 2 and
C ≥ 1.

(4.2) ‖∇f(xe)‖ ≤
(
ρ̃bo(C) + 3 η

L2k
2C2‖∇f(x0)‖

)
‖∇f(x0)‖.

where ρ̃bo is defined in (3.7) with M ≥ 2 and ρ = 1− µ
L . In addition,

(i) If η
L2 ‖∇f(x0)‖ < ρk(1−ρk)(2−ρk)

3k2(2+ρk)2
then

∃ δ > 0 s.t. ‖∇f(xe)‖ < ρk ‖∇f(x0)‖ for C ∈ [2+ρ
k

2−ρk − δ,
2+ρk

2−ρk + δ].

(ii) If η
L2 ‖∇f(x0)‖ < min(ρ

k(1−ρk)(2−ρk)
3k2(2+ρk)2

, ρ
k−ρ2

3k2C2
2
) then

‖∇f(xe)‖ < ρk ‖∇f(x0)‖ for C ∈ [2+ρ
k

2−ρk , C2].

(iii) If η
L2 ‖∇f(x0)‖ < min(ρ

k(1−ρk)(2−ρk)
3k2(2+ρk)2

, ρ
k−ρ∗

3k2C2
∗

) then

‖∇f(xe)‖ < ρk ‖∇f(x0)‖ for C ∈ [2+ρ
k

2−ρk , C∗].

Proof. Using Proposition 2.2, the result follows from upper bounding

ρ̂(C) := ρ̃(C) + 3 η
L2k

2C2 ‖∇f(x0)‖ ,



16 M. BARRÉ, A. TAYLOR, AND A. D’ASPREMONT

by ρk. In addition, since ρ̃ is convex in C (see Proposition 3.4) so is ρ̂.

The case (i) follows directly from the fact that ρ̃(C1) = ρ1 = ρk

2−ρk (see Lemma 3.7). For

(ii) (resp. (iii)), we have ρ̃(C2) ≤ ρ̃bo(C2) = ρ2 (resp. ρ̃(C∗) = ρ∗), thus taking η
L2 ‖∇f(x0)‖ <

min(ρ
k(1−ρk)(2−ρk)
3k2(2+ρk)2

, ρ
k−ρ2

3k2C2
2
) (resp. η

L2 ‖∇f(x0)‖ < min(ρ
k(1−ρk)(2−ρk)
3k2(2+ρk)2

, ρ
k−ρ∗

3k2C2
∗

)) implies ρ̂(C1) <

ρk and ρ̂(C2) < ρk (resp. ρ̂(C∗) < ρk), which gives the result using convexity of ρ̂.

Figure 2 displays the values of bounds from (4.2) with fixed k, µ and L for various values
of the perturbation parameter η‖∇f(x0)‖. We observe that we do not loose much by using
the simple upper bound with M = 2 compared with the numerical value of ρ̃(C) obtained by
solving (3.3). In the next section we study a version of Algorithm 1.1 with restarts.

4.2. Guarded and Adaptive Methods. Due to the particular form of the perturbation
parameter α, proportional to η‖∇f(x0)‖ in the case of the gradient step operator, we see
that as soon as η‖∇f(x0)‖ is small enough to get ρ̃(C) + 3 η

L2k
2C2 ‖∇f(x0)‖ < 1, one can

restart Algorithm 1.1 to get a decreasing sequence of perturbation parameters, leading to
faster convergence guarantees. Adding a guarded step to this scheme produces Algorithm 4.1.
The guarded step consists in using the extrapolated point xe only if the gradient norm at this
point is smaller than those of previous iterates, yielding global convergence guarantees.

Algorithm 4.1 Guarded Constrained Anderson Acceleration

Input:
- x0 ∈ Rn, initial guess.
- f strongly convex function with L-Lipschitz gradient.
- k ∈ N∗, a constant controlling the number of gradient steps used in extrapolation.
- N number of outer iterations.

for i = 0 . . . N − 1 do
x0i = xi
for j = 0 . . . k do
xj+1
i = xji −

1
L∇f(xji )

end for
R =

[
x0i − x1i · · · xki − x

k+1
i

]
Choose C(i) ≥ 1
Compute c̃ = argmin

1T c=1, ‖c‖1≤C(i)

‖Rc‖

xei =
∑k

j=0 c̃jx
j
i

xi+1 = argmin
x∈{xei ,xki }

‖∇f(x)‖ (guarded step)

end for
Output: xN

Proposition 4.2. Let f be a µ-strongly convex function, with L-Lipschitz gradient and η-
Lispchitz Hessian. Let (xi)i ∈ Rn be the sequence of iterates of Algorithm 4.1 on f , initiated
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at x0 ∈ Rn with k > 2, N ≥ 1 and with parameters (C(i))i such that C(i) ≥ 1. It holds that

‖∇f(xN )‖ ≤
N∏
i=1

ρ̂i(C(i−1))‖∇f(x0)‖,

where

(4.3) ρ̂i(C) = min
(
ρk, ρ̃bo(C) + 3 η

L2 ‖∇f(xi−1)‖k2C2
)
,

with ρ̃bo defined in (3.7) with ρ = 1− µ
L .

Proof. This is a direct consequence of Proposition 4.1.

Using the explicit expression (4.2), one can for instance get a (conservative) lower bound
on the number of iterations of Algorithm 4.1 for acceleration to occur (i.e. escape the guarded
regime, which does nothing more than just iterating F ).

Corollary 4.3. Let f be a µ-strongly convex function, with L-Lipschitz gradient and η-
Lispchitz Hessian. Let (xi)i ∈ Rn be the sequence of iterates of Algorithm 4.1 on f , initiated
at x0 ∈ Rn with k > 2, N ≥ 1 and with parameters (C(i))i such that C(i) ∈ [3, C∗]. It holds
that

N ≥
log

(
η
L2

3k2(2+ρk)2‖∇f(x0)‖
ρk(1−ρk)(2−ρk)

)
k log

1
ρ

=⇒
N∏
i=1

ρ̂i(C(i−1)) < ρkN ,

with ρ̂i(C(i−1)) defined in (4.3).

Proof. We use (iii) from Proposition 4.1 along with 2+ρk

2−ρk ≤ 3.

We notice that choosing (C(i))i such that ‖∇f(xi−1)‖C2
(i−1) tends to 0 with i makes the

perturbation terms 3 η
L2 ‖∇f(xi−1)‖k2C2

(i−1) in the convergence rate of Proposition 4.1 vanish

with iterations. In addition, when the sequence (C(i))i is unbounded above, there exists a
rank i0 such that ρ̃bo(C(i)) = ρ∗ ∀i ≥ i0. Satisfying these two properties simultaneously would
guarantee that ρ̂i

(
C(i−1)

)
−→
i→+∞

ρ∗ (with ρ̂i defined in (4.3)). We propose such an adaptive

choice of (C(i))i in the next corollary.

Corollary 4.4. Under the conditions and notations of Proposition 4.2, with (C(i))i satisfying

(Adapt-Ctr) C(i) = i
(

L
‖∇f(xi)‖

)δ
for i ∈ N,

with 0 < δ < 1
2 , we have that

ρ̂N (C(N−1)) −→
N→+∞

ρ∗,

meaning that asymptotically we reach the convergence rate of unconstrained Anderson accel-
eration on quadratics.

Proof. With this choice of C(i) we have

ρ̂i(C(i−1)) = min
(
ρk, ρ̃bo(C(i−1)) + 3 η

L2(1−δ) ‖∇f(xi−1)‖1−2δk2
)
.
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We have ‖∇f(xi−1)‖ that goes to 0 when i grows, which implies that C(i−1) tends to +∞ and

thus ρ̃bo((C(i−1))) = ρ∗ for i large enough. The choice 0 < δ < 1
2 finally leads to the desired

conclusion.

The next section is dedicated to numerical testing of Algorithm 4.1 with the choice of con-
straints parameters (Adapt-Ctr).

4.3. Numerical Experiments. For solving (1.2), we consider the following reformulation

(4.4) min
1T c=1
‖c‖1≤C

1
2‖Rc‖

2,

which we solve using a Frank-Wolfe method [14, 18]. Indeed, as the constraint set is the
convex hull of the set of points {C+1

2 ei + 1−C
2 ej , i, j = 1, . . . , k + 1, i 6= j} where ei is the

unit vector of Rk+1 with a one at the i-th position and zeros elsewhere. Frank-Wolfe methods
have the advantage to offer simple access to an upper bound of the primal gap which is the
stopping criterion we are interested in (see Corollary 2.3).

Figure 3 contains experiments performed on `2 regularized logisitc regression. Blue curves
correspond to gradient descent with step size 1

L where L is the Lipschitz constant of the
objective function. Red curves are obtained with Algorithm 4.1 using Ci = +∞ (i.e. Anderson
acceleration) and in that case (1.2) only involves solving a linear system. Finally, green curves
correspond to Algorithm 4.1 using constraint parameters (Adapt-Ctr) with δ = 0.49 (CAA).

Using an unconstrained or unregularized version of Anderson acceleration is often the best
practical choice, although it is not generically guaranteed to even converge in all situations
beyond quadratic minimization. We observe on Figure 3 that our constrained version (CAA)
which provably guarantees acceleration exhibits similar good practical performances.

Code. The implementation of CAA that we used for numerical experiments of Subsec-
tion 4.3 is available at

https://github.com/mathbarre/ConstrainedAndersonAcceleration

Conclusion. In this work, we proposed upper bounds on the optimal value of a constrained
Chebyshev problem, and used them to produce explicit, dimension independent, local con-
vergence bounds on constrained Anderson acceleration applied to nonlinear operators with a
particular emphasis on gradient step operators. In this setting, we proposed a guarded method
with an adaptive choice of constraint parameter. Our convergence bounds are somewhat con-
servative as they rely on treating the nonlinear part of the operator as a perturbation of the
linear setting. Some open questions remain. Can we remove the symmetry requirements in
Assumptions 1.1 and 1.2 and still use a constrained Chebyshev arguments? Can we prove
better convergence bounds on Anderson acceleration without decoupling linear and nonlinear
parts of the operator? This last part would however require very different proof techniques.

https://github.com/mathbarre/ConstrainedAndersonAcceleration
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Figure 3. Comparison of Gradient descent (GD), vanilla Anderson acceleration (AA) and constrained
Anderson acceleration with adaptive constraints parameters (CAA) on Logistic regression with `2 regularization
fixed to 10−8L where L is the Lipschitz constant of the logisitc regression. Top: Madelon dataset. Bottom:
RCV1 dataset. Datasets are taken from the LIBSVM library [9].
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Appendix A. Proof Proposition 2.2. We consider fixed point iterations of F , of the form

xi+1 = G(xi) + ξ(xi).

Equivalently, such iterations can be described as

xi+1 − x∗ = G(xi − x∗) + ξ(xi)− ξ(x∗),

with x∗ = F (x∗). Expanding previous expression, one can rewrite the iterative process as

xi+1 − x∗ = Gi+1(x0 − x∗) +
k∑
j=0

Gi−j(ξ(xj)− ξ(x∗)),

or in terms of the fixed point residual F (xi)− xi = xi+1 − xi,

xi+1 − xi = (G− I)Gi(x0 − x∗) + (G− I)
i−1∑
j=0

Gi−j−1 (ξ(xj)− ξ(x∗)) + ξ(xi)− ξ(x∗).

Let us use those expressions, along with a triangle inequality, to work out the fixed-point
residual after extrapolation

‖(F − I)(xe)‖
= ‖(G− I)(xe − x∗) + ξ(xe)− ξ(x∗)‖

=

∥∥∥∥∥
k∑
i=0

c̃i(G− I)(xi − x∗) + ξ(xe)− ξ(x∗)

∥∥∥∥∥
=

∥∥∥∥∥∥
k∑
i=0

c̃iG
i(G− I)(x0 − x∗) + (G− I)

k∑
i=0

c̃i

i−1∑
j=0

Gi−1−j(ξ(xj)− ξ(x∗)) + ξ(xe)− ξ(x∗)

∥∥∥∥∥∥
=

∥∥∥∥∥
k∑
i=0

c̃i(xi+1 − xi)−
k∑
i=0

c̃iξ(xi) + ξ(xe)

∥∥∥∥∥ ,

where we used
∑k

i=0 c̃i = 1 in the last step. We finally arrive to

(A.1) ‖(F − I)(xe)‖ ≤

∥∥∥∥∥
k∑
i=0

c̃i(xi+1 − xi)

∥∥∥∥∥+

∥∥∥∥∥ξ(xe)−
k∑
i=0

c̃iξ(xi)

∥∥∥∥∥ ,
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where the first term on the right hand side is exactly the quantity that is minimized in
Algorithm 1.1. We then bound the two terms separately. Let c∗ denotes the coefficients of
the polynomial pC∗ = argmin

p∈Rk[X]
p(1)=1
‖p‖1≤C

max
x∈[0,ρ]

|p(x)|, we proceed as follows:

∥∥∥∥∥
k∑
i=0

c̃i(xi+1 − xi)

∥∥∥∥∥ ≤
∥∥∥∥∥

k∑
i=0

c∗i (xi+1 − xi)

∥∥∥∥∥ since c∗ feasible for problem (1.2),

and then∥∥∥∥∥
k∑
i=0

c∗i (xi+1 − xi)

∥∥∥∥∥
=

∥∥∥∥∥∥
k∑
i=0

c∗iG
i(G− I)(x0 − x∗) + (G− I)

k∑
i=0

c∗i

i−1∑
j=0

Gi−1−j(ξ(xj)− ξ(x∗))

+
k∑
i=0

c∗i (ξ(xi)− ξ(x∗))

∥∥∥∥∥
=

∥∥∥∥∥∥
k∑
i=0

c∗iG
i [(G− I)(x0 − x∗) + ξ(x0)− ξ(x∗)] + (G− I)

k∑
i=0

c∗i

i−1∑
j=0

Gi−1−j(ξ(xj)− ξ(x∗))

+

k∑
i=0

c∗i
[
ξ(xi)− ξ(x∗)−Gi(ξ(x0)− ξ(x∗))

]∥∥∥∥∥
≤

∥∥∥∥∥
k∑
i=0

c∗iG
i [(F − I)(x0)]

∥∥∥∥∥
+

∥∥∥∥∥∥(G− I)
k∑
i=1

c∗i

i−1∑
j=0

Gi−1−j(ξ(xj)− ξ(x∗)) +
k∑
i=1

c∗i
[
ξ(xi)− ξ(x∗)−Gi(ξ(x0)− ξ(x∗))

]∥∥∥∥∥∥
≤
∥∥pC∗ (G)

∥∥ ‖(F − I)(x0)‖+

∥∥∥∥∥∥
k∑
i=1

c∗i

 i∑
j=1

Gi−j(ξ(xj)− ξ(x∗))−
i−1∑
j=0

Gi−1−j(ξ(xj)− ξ(x∗))

∥∥∥∥∥∥
≤
∥∥pC∗ (G)

∥∥ ‖(F − I)(x0)‖+

∥∥∥∥∥∥
k∑
i=1

c∗i

i−1∑
j=0

Gi−j−1 [ξ(xj+1)− ξ(xj)]

∥∥∥∥∥∥
≤
∥∥pC∗ (G)

∥∥ ‖(F − I)(x0)‖+ α
k∑
i=1

|c∗i |
i−1∑
j=0

ρi−j−1ρj ‖(F − I)(x0)‖

≤

(∥∥pC∗ (G)
∥∥+ α

k∑
i=1

|c∗i |ρi−1i

)
‖(F − I)(x0)‖

≤
(∥∥pC∗ (G)

∥∥+ αk‖c∗‖1
)
‖(F − I)(x0)‖
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≤
(∥∥pC∗ (G)

∥∥+ αkC
)
‖(F − I)(x0)‖ .

One can bound ‖pC∗ (G)‖ with standard arguments: Since 0 4 G 4 ρI, there exist an or-
thogonal matrix O and a diagonal matrix D such that G = OtDO. Therefore, we get
‖p∗(G)‖ = ‖OtpC∗ (D)O‖ ≤ ‖pC∗ (D)‖. One can then notice that ‖pC∗ (D)‖ = max

λ∈Sp(G)
|pC∗ (λ)| ≤

max
x∈[0,ρ]

|pC∗ (x)|, where Sp(G) is the set of eigenvalues of G. Let us bound the second term of

the right hand side in (A.1)

‖ξ(xe)−
k∑
i=0

c̃iξ(xi)‖ ≤ ‖ξ(xe)− ξ(xk)‖+ ‖ξ(xk)−
k∑
i=0

c̃iξ(xi)‖

≤ α

(
‖xe − xk‖+

k∑
i=0

|c̃i|‖xk − xi‖

)

≤ 2α
k−1∑
i=0

|c̃i|‖xk − xi‖

≤ 2α
k−1∑
i=0

|c̃i|ρi‖xk−i − x0‖

≤ 2α

k−1∑
i=0

|c̃i|ρi
k−1−i∑
j=0

‖xj+1 − xj‖

≤ 2α

k−1∑
i=0

|c̃i|ρi(k − i)‖(F − I)(x0)‖

≤ 2αk‖c̃‖1‖(F − I)(x0)‖
≤ 2αkC‖(F − I)(x0)‖.

Combining the two previous bounds allows reaching (2.1).
Let Assumption 1.2 hold, we can then pick G = F ′(x0) and ξ = F − F ′(x0) (note that

F ′(x0) is symmetric positive semidefinite by assumption and that ‖F ′(x0)‖ ≤ ρ when F is ρ-
Lipschitz). In computations of the previous bounds, Lischitzness was only used on the convex
set BC = {

∑k
i=0 cixi : ‖c‖1 ≤ C,

∑k
i=0 ci = 1}. Let us bound ‖Dξ(x)‖ for x =

∑k
i=0 cixi in

BC .

‖Dξ(x)‖ = ‖F ′(x)− F ′(x0)‖

≤ η‖x− x0‖ = η

∥∥∥∥∥
k∑
i=0

ci(xi − x0)

∥∥∥∥∥
≤ η

k∑
i=1

|ci|

∥∥∥∥∥∥
i−1∑
j=0

xj+1 − xj

∥∥∥∥∥∥
≤ η

k∑
i=1

|ci|
i−1∑
j=0

ρj ‖x1 − x0‖
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≤ ηCk ‖F (x0)− x0‖ .

Using the mean value theorem, we conclude that ξ(x) is ηCk ‖F (x0)− x0‖-Lipschitz on BC .

Appendix B. Some Properties of Chebyshev Polynomials. Unspecified facts on Cheby-
shev polynomials of the first kind are borrowed from [23].

Proposition B.1. Let k ∈ N and a > 1, we have

(B.1)
Tk

Tk(a)
= argmin

p∈Rk[X]
p(a)=1

max
x∈[−1,1]

|p(x)|,

where Tk is the first kind Chebyshev polynomials of order k.

Proof. A proof of this result can be found in [13, Equation 10].

The following result is classically used for analyzing Anderson acceleration [17, Section 3].

Proposition B.2. Let k ∈ N∗, and ρ ∈]0, 1[. It holds that

Tk(
2X−ρ
ρ )

Tk(
2−ρ
ρ )

= argmin
p∈Rk[X]
p(1)=1

max
x∈[0,ρ]

|p(x)|,

where Tk is the first kind Chebychev polynomials of order k. Furthermore,

max
x∈[0,ρ]

∣∣∣∣∣Tk(
2X−ρ
ρ )

Tk(
2−ρ
ρ )

∣∣∣∣∣ =
2βk

1 + β2k
,

with β = 1−
√
1−ρ

1+
√
1−ρ .

Proof. We have

min
p∈Rk[X]
p(1)=1

max
x∈[0,ρ]

|p(x)| = min
p∈Rk[X]
p(1)=1

max
y∈[−1,1]

|p(ρy+1
2 )| = min

q∈Rk[X]

q(
2−ρ
ρ )=1

max
y∈[−1,1]

|q(y)|.

Thus, if p∗ is solution of the left hand side problem, q∗(y) = p∗(ρ
y+1
2 ) is solution of the right

hand side one. This last problem is solved using Proposition B.1 with a = 2−ρ
ρ > 1. This

gives us the solution q∗(y) = Tk(y)

/
Tk(

2−ρ
ρ ), and thus the solution to the original problem

p∗(x) = Tk(
2x−ρ
ρ )

/
Tk(

2−ρ
ρ ).

For the value of the max, we know that max
y∈[−1,1]

|Tk(y)| = 1, therefore

max
x∈[0,ρ]

∣∣∣∣∣Tk(
2X−ρ
ρ )

Tk(
2−ρ
ρ )

∣∣∣∣∣ = 1

Tk(
2−ρ
ρ )

.
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Since 2−ρ
ρ > 1 one can use the formulas for Tk(x) for |x| ≥ 1 (see e.g [23, Eq 1.49]):

Tk(x) =
1

2

((
x−

√
x2 − 1

)k
+
(
x+

√
x2 − 1

)k)
when |x| ≥ 1.

It follows that

Tk(
2−ρ
ρ ) = 1

2

((
2−ρ
ρ −

√
(2−ρρ )2 − 1

)k
+

(
2−ρ
ρ +

√
(2−ρρ )2 − 1

)k)

= 1
2

((
2−ρ−2

√
1−ρ

ρ

)k
+
(
2−ρ+2

√
1−ρ

ρ

)k)

= 1
2

((
1−
√

1− ρ
)2k

+
(
1 +
√

1− ρ
)2k)

ρk

= 1
2

((
1−
√

1− ρ
)2k

+
(
1 +
√

1− ρ
)2k)

(1−
(√

1− ρ
)2

)k

= 1
2

((
1−
√

1− ρ
)2k

+
(
1 +
√

1− ρ
)2k)(

1−
√

1− ρ
)k (

1 +
√

1− ρ
)k

= 1
2

(1−
√
1−ρ)

2k

(1+
√
1−ρ)

2k + 1

(1−
√
1−ρ)

k

(1+
√
1−ρ)

k

=
1 + β2k

2βk
.

In the following, we focus on problems where ε is close to 0.

Lemma B.3. Let k > 0 and ρ ∈ [0, 1[. For ε ∈ [0, ε̃] with ε̃ = ρ
1+cos(

2k−1
2k π)

1−cos( 2k−12k π)
we have the

following properties of R
[−ε,ρ]
k =

Tk(
2(X+ε)
ρ+ε −1)

Tk(
2(1+ε)
ρ+ε −1)

.

(i)
∣∣∣R[−ε,ρ]

k (X)
∣∣∣ is maximal on the mi =

(ρ+ε) cos(
iπ
k )+ρ−ε

2 ∈ [−ε, ρ] for i = 0, . . . , k and

sign(R
[−ε,ρ]
k (mi)) = (−1)i.

(ii) Let c ∈ Rk+1 such that R
[−ε,ρ]
k (X) =

∑k
i=0 ciX

i. Then sign(ci) = (−1)k−i for i =
1, . . . , k and (−1)kc0 ≥ 0.

Proof. The Chebyshev polynomial of first kind Tk(X) is defined such that

Tk(cos(θ)) = cos(kθ) for all θ ∈ R.

Using this property, (i) is obtained by observing that max
x∈[−1,1]

|Tk(x)| = 1 is attained for xi =

cos( iπk ) with i = 0, . . . , k. In particular Tk(xi) = (−1)i. Thus |R[−ε,ρ]
k | has its maxima on

mi =
(ρ+ε) cos(

iπ
k )+ρ−ε

2 , i = 0, . . . , k
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and R
[−ε,ρ]
k (mi) = (−1)i.

Let us now prove (ii). From the definition of Tk, we get that the roots of Tk are the

(zi)i∈[0,k−1] = (cos
(
2i+1
2k π

)
)i∈[0,k−1] ∈ [−1, 1]. The roots of R

[−ε,ρ]
k (X) are the zεi defined such

that
2zεi
ρ+ε −

ρ−ε
ρ+ε = zi. This corresponds to

zεi = (ρ+ε)zi+ρ−ε
2 ∈ [−ε, ρ], i = 0, . . . , k − 1.

The smallest root zεk−1 =
(ρ+ε) cos(

2k−1
2k π)+ρ−ε
2 is nonnegative for ε ∈ [0, ρ

1+cos(
2k−1
2k π)

1−cos( 2k−12k π)
] = [0, ε̃].

This means that this for choice of ε, all the roots of R
[−ε,ρ]
k are in [0, ρ].

One can thus express R
[−ε,ρ]
k using its roots as R

[−ε,ρ]
k (x) = a

∏k−1
i=0 (x − zεi ) with a the

leading coefficients. Using that the leading coefficient of Tk is 2k−1 and that Tk(
2(1+ε)
ρ+ε −1) > 0

since 2(1+ε)
ρ+ε − 1 > 1, we have a > 0. By developing the product we have

R
[−ε,ρ]
k (x) = a

 k∑
j=1

(−1)k−jxj
∑

0<i0<···<ik−j

zεi0 · · · z
ε
ik−j

+ xk

 ,

which gives us (ii).

Appendix C. Proof of Theorem 3.9. In order to prove Theorem 3.9, we use some
intermediary results on rescaled Chebyshev polynomials, listed on the following Lemma.

Lemma C.1. Let k > 0 and 0 ≤ ε ≤ ε̃, suppose that there exists a nonzero polynomial
h ∈ Rk[X] satisfying

(i) h(1) = 0.

(ii) max
x∈[0,ρ]

|h(x)| ≤ 1
2 max
x∈[0,ρ]

|R[−ε,ρ]
k (x)|.

(iii) max
x∈[0,ρ]

|R[−ε,ρ]
k (x) + h(x)| < max

x∈[0,ρ]
|R[−ε,ρ]

k (x)|.

Then, h possesses k distinct roots in ]0, 1], (−1)kh(−1) > 0 and (−1)kh(0) > 0.

Proof. From Lemma B.3 we know that |R[−ε,ρ]
k | is maximal on [−ε, ρ] at the mi =

(ρ+ε) cos(
iπ
k )+ρ−ε

2 for i = 0, . . . , k and sign(R
[−ε,ρ]
k (mi)) = (−1)i. In addition, mi ∈]0, ρ] for

i = 0, . . . , k − 1. Indeed the mi are in decreasing order and mk−1 =
(ρ+ε) cos(

(k−1)π
k )+ρ−ε

2 >

(ρ+ε) cos(
(2k−1)π

2k )+ρ−ε
2 ≥ (ρ+ε̃) cos(

(2k−1)π
2k )+ρ−ε̃

2 = 0 since ε ∈ [0, ε̃].

It follows from (ii) that |h(mi)| ≤ 1
2 |R

[−ε,ρ]
k (mi)| for i = 0, . . . , k − 1 which implies that

|R[−ε,ρ]
k (mi) + h(mi)| = |R[−ε,ρ]

k (mi)| + sign(R
[−ε,ρ]
k (mi))h(mi) = |R[−ε,ρ]

k (mi)| + (−1)ih(mi).
Together with (iii) this leads to (−1)ih(mi) < 0 for i = 0, . . . , k − 1.

Because h alternates sign between mi’s, the mean value theorem implies that h possesses
a root inside each interval ]mi+1,mi[⊂]0, 1[ for i = 0, . . . , k−2. Along with (i), this shows that
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h has k distinct roots in ]mk−1, 1] ⊂]0, 1]. Furthermore, h keeps the same sign on ]−∞,mk−1]
(since it already has k roots) which is (−1)k. In particular, it implies that (−1)kh(−1) > 0
and (−1)kh(0) > 0 reaching the desired statements.

Proof of Theorem 3.9.

Proof. We proceed by contradiction: we assume that R
[−ε,ρ]
k is not a solution to the

constrained Chebyshev problem and show that it leads to a contradiction.

Assume that R
[−ε,ρ]
k is not a global minimum of (Cstr-Cheb), R

[−ε,ρ]
k is not a local minimum

either, therefore for all δ > 0, there exists a nonzero polynomial h ∈ Rk[X] such that

(i) R
[−ε,ρ]
k (1) + h(1) = 1. (feasibility)

(ii)
∥∥∥R[−ε,ρ]

k + h
∥∥∥
1
≤
∥∥∥R[−ε,ρ]

k

∥∥∥
1
. (feasibility)

(iii) max
x∈[0,ρ]

|h(x)| ≤ δ. (not a local minimum)

(iv) max
x∈[0,ρ]

|R[−ε,ρ]
k (x) + h(x)| < max

x∈[0,ρ]
|R[−ε,ρ]

k (x)|. (not a minimum).

For δ < 1
2 maxx∈[0,ρ] |R

[−ε,ρ]
k (x)|, (i), (iii) and (iv) correspond to the assumptions of Lemma C.1

for h. This implies that it possesses k roots in ]0, 1[ , (−1)kh(−1) > 0 and (−1)kh(0) > 0.

Then, writing R
[−ε,ρ]
k (x) =

∑k
i=0 cix

i and h(x) =
∑k

i=0 hix
i, Lemma B.3 allows concluding

that
(v) ci 6= 0 and sign(ci) = (−1)k+i for i = 1, . . . , k
(vi) (−1)kc0 ≥ 0.

From (vi) and the fact that (−1)kh(0) > 0, we have |c0+h0| = (−1)k(c0+h0) = |c0|+(−1)kh0.
Hence, for δ small enough, it follows that 0 < maxi=1,...,k |hi| < mini=1,...,k |ci| and we obtain

|ci + hi| = |ci|+ sign(ci)hi = |ci|+ (−1)k+ihi,

where the second equality follows from (v).

It remains to express the `1 norm of R
[−ε,ρ]
k + h as

∥∥∥R[−ε,ρ]
k + h

∥∥∥
1

=
k∑
i=0

|ci + hi| =
k∑
i=0

|ci|+ (−1)k+ihi

=
∥∥∥R[−ε,ρ]

k

∥∥∥
1

+ (−1)kh(−1).

Combining (ii) with the previous equality leads to (−1)kh(−1) ≤ 0 which is in contradiction
with (−1)kh(−1) obtained earlier.

Therefore, R
[−ε,ρ]
k has to be a solution of (Cstr-Cheb), reaching the desired claim.

Appendix D. Ordering of the Ci.

Lemma D.1. Let k ∈ N, ρ < 1, C∗ is defined in (3.4) (an explicit value is provided in
Remark 3.11) and C2 in (3.6). It holds that

C1 = 2+ρk

2−ρk ≤ C2 for k > 1 and C2 ≤ C∗ for k ≥ 1.
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Proof. We start from the expression of C2

C2 =
(1−
√

1+ρ2)k+(1+
√

1+ρ2)k

(1−
√

1−ρ2)k+(1+
√

1−ρ2)k
=

∑bk/2c
i=0

(
k
2i

)
(1 + ρ2)i∑bk/2c

i=0

(
k
2i

)
(1− ρ2)i

.

For obtaining C2 ≥ 2+ρk

2−ρk we need to show

(2− ρk)
bk/2c∑
i=0

(
k

2i

)
(1 + ρ2)i − (2 + ρk)

bk/2c∑
i=0

(
k

2i

)
(1− ρ2)i ≥ 0,

and in particular we study

(2− ρk)(1 + ρ2)i − (2 + ρk)(1− ρ2)i.

When i = 0, this is equal to −2ρk, and when i = 1 this is equal to 4ρ2− 2ρk. In addition, one
can easily observe that it is an increasing function of i. Hence, it is nonnegative when i ≥ 1.
For k ≥ 2, we can further write

(2− ρk)
bk/2c∑
i=0

(
k

2i

)
(1 + ρ2)i − (2 + ρk)

bk/2c∑
i=0

(
k

2i

)
(1− ρ2)i ≥ −2ρk +

(
k

2

)
(−2ρk + 4ρ2)

≥ 4ρ2(1− ρk−2)
≥ 0 strict inequality when k > 2,

and then

C2 ≥ 2+ρk

2−ρk with strict inequality when k > 2.

Finally, we show the second inequality between C∗ and C2.

C∗ =
(2+ρ−2

√
1+ρ)

k
+(2+ρ+2

√
1+ρ)

k

(2−ρ−2
√
1−ρ)

k
+(2−ρ+2

√
1−ρ)

k =

∑bk/2c
i=0

(
k
2i

)
(1 + ρ

2)k−2i(1 + ρ)i∑bk/2c
i=0

(
k
2i

)
(1− ρ

2)k−2i(1− ρ)i
.

When k ≥ 1, (1 + ρ
2)k−2i(1 + ρ)i > (1 + ρ2)i and (1− ρ

2)k−2i(1− ρ)i < (1− ρ2)i for i ∈ [0, bk2c]
and thus

C∗ > C2 when k ≥ 1,

reaching the desired conclusion.
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