Principled Analyses of First-Order Methods with Inexact Proximal Operators

Mathieu Barré, Adrien Taylor and Francis Bach

EUROPT 2021 - July, 8

What is this work about?

• Practical tool for worst-case analyses of algorithm with inexact proximal computations.

What is this work about?

- Practical tool for worst-case analyses of algorithm with inexact proximal computations.
- Built on Performance Estimation Problem (PEP) (Drori & Teboulle 2014) (Taylor, Hendrickx & Glineur 2017).

What is this work about?

- Practical tool for worst-case analyses of algorithm with inexact proximal computations.
- Built on Performance Estimation Problem (PEP) (Drori & Teboulle 2014) (Taylor, Hendrickx & Glineur 2017).
- Implemented in PESTO Toolbox (everything is reproducible) /github.com/AdrienTaylor/Performance-Estimation-Toolbox.

$$\operatorname{prox}_{\lambda h}(z) = \operatorname*{argmin}_{x \in \mathbb{R}^d} \underbrace{\lambda h(x) + \frac{1}{2} \|x - z\|^2}_{\Phi(x)}.$$
 (Prox)

Computing a proximal step corresponds to

$$\operatorname{prox}_{\lambda h}(z) = \operatorname*{argmin}_{x \in \mathbb{R}^d} \underbrace{\lambda h(x) + \frac{1}{2} \|x - z\|^2}_{\Phi(x)}.$$
 (Prox)

• Introduced in optimization by Martinet and Rockafellar.

$$\operatorname{prox}_{\lambda h}(z) = \operatorname*{argmin}_{x \in \mathbb{R}^d} \underbrace{\lambda h(x) + \frac{1}{2} \|x - z\|^2}_{\Phi(x)}.$$
 (Prox)

- Introduced in optimization by Martinet and Rockafellar.
- Base primitive for many optimization algorithms

$$\operatorname{prox}_{\lambda h}(z) = \operatorname*{argmin}_{x \in \mathbb{R}^d} \underbrace{\lambda h(x) + \frac{1}{2} \|x - z\|^2}_{\Phi(x)}.$$
 (Prox)

- Introduced in optimization by Martinet and Rockafellar.
- Base primitive for many optimization algorithms (e.g. splitting methods, augmented Lagrangian, HPE, Catalyst, high order tensor methods).

$$\operatorname{prox}_{\lambda h}(z) = \operatorname{argmin}_{x \in \mathbb{R}^d} \underbrace{\lambda h(x) + \frac{1}{2} ||x - z||^2}_{\Phi(x)}.$$
 (Prox)

- Introduced in optimization by Martinet and Rockafellar.
- Base primitive for many optimization algorithms (e.g. splitting methods, augmented Lagrangian, HPE, Catalyst, high order tensor methods).
- Exact solutions to (Prox) known in some cases (e.g. ||·||_p, indicator functions, ... see e.g. http://proximity-operator.net).

$$\operatorname{prox}_{\lambda h}(z) = \operatorname{argmin}_{x \in \mathbb{R}^d} \underbrace{\lambda h(x) + \frac{1}{2} ||x - z||^2}_{\Phi(x)}.$$
 (Prox)

- Introduced in optimization by Martinet and Rockafellar.
- Base primitive for many optimization algorithms (e.g. splitting methods, augmented Lagrangian, HPE, Catalyst, high order tensor methods).
- Exact solutions to (Prox) known in some cases (e.g. ||·||_p, indicator functions, ... see e.g. http://proximity-operator.net).
- In many situations, no closed formula, (Prox) has to be approximated.

We wish to solve problem

 $\min_{x\in\mathbb{R}^d}h(x),$

with $h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$.

We wish to solve problem

 $\min_{x\in\mathbb{R}^d}h(x),$

with $h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$.

Using e.g.

proximal point algorithm:

 $x_{k+1} = x_k - \lambda \ \partial h(x_{k+1})$

We wish to solve problem

 $\min_{x\in\mathbb{R}^d}h(x),$

with $h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$.

Using e.g.

proximal point algorithm:

$$x_{k+1} = x_k - \lambda \, \partial h(x_{k+1})$$

Interested in worst-case bounds of the form

$$h(x_N) - h(x_*) \leq C(N) ||x_0 - x_*||^2$$

 $x_* \in \underset{x}{\operatorname{argmin}} h(x)$

We wish to solve problem

 $\min_{x\in\mathbb{R}^d}h(x),$

with $h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$.

Using e.g.

proximal point algorithm:

$$x_{k+1} = x_k - \lambda \ \partial h(x_{k+1})$$

Interested in worst-case bounds of the form

$$h(x_N) - h(x_*) \leq C(N) ||x_0 - x_*||^2$$

 $x_* \in \underset{x}{\operatorname{argmin}} h(x)$

We wish to solve problem

$$\min_{x\in\mathbb{R}^d}h(x),$$

with $h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$.

Using e.g. relatively inexact proximal point algorithm:

$$x_{k+1} = x_k - \lambda \ \partial h(x_{k+1})$$

Interested in worst-case bounds of the form

$$h(x_N) - h(x_*) \le C(N) ||x_0 - x_*||^2$$

 $x_* \in \underset{x}{\operatorname{argmin}} h(x)$

We wish to solve problem

$$\min_{x\in\mathbb{R}^d}h(x),$$

with $h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$.

Using e.g. relatively inexact proximal point algorithm:

$$x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k),$$

Interested in worst-case bounds of the form

$$h(x_N) - h(x_*) \leq C(N) ||x_0 - x_*||^2$$

 $x_* \in \underset{x}{\operatorname{argmin}} h(x)$

We wish to solve problem

$$\min_{x\in\mathbb{R}^d}h(x),$$

with $h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$.

Using e.g. relatively inexact proximal point algorithm:

$$x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k),$$

with $||e_k||^2 \leq \frac{\sigma^2}{\lambda^2} ||x_{k+1} - x_k||^2$.

Interested in worst-case bounds of the form

$$h(x_N) - h(x_*) \leq C(N) ||x_0 - x_*||^2$$

 $x_* \in \underset{x}{\operatorname{argmin}} h(x)$

Find smallest C(N) such that

$$h(x_N) - h(x_*) \leq C(N) ||x_0 - x_*||^2$$

Find smallest C(N) such that

$$h(x_N) - h(x_*) \leq C(N) ||x_0 - x_*||^2$$

$$C(N) =$$
 maximize $\frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2}$

Find smallest C(N) such that

$$h(x_N) - h(x_*) \leq C(N) ||x_0 - x_*||^2$$

$$\begin{split} \mathcal{C}(N) &= & \text{maximize} & \quad \frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2} \\ & \text{subject to} & \quad d \in \mathbb{N}^*, \, h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d), \\ & \quad x_0 \in \mathbb{R}^d, \, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1, \end{split}$$

Find smallest C(N) such that

$$h(x_N) - h(x_*) \leq C(N) ||x_0 - x_*||^2$$

$$\begin{split} \mathcal{C}(N) &= & \text{maximize} \quad \frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2} \\ & \text{subject to} \quad d \in \mathbb{N}^*, \, h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d), \\ & x_0 \in \mathbb{R}^d, \, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1, \\ & x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k) \text{ for } k = 0, \dots, N-1, \\ & 0 \in \partial h(x_*), \end{split}$$

Find smallest C(N) such that

$$h(x_N) - h(x_*) \leq C(N) ||x_0 - x_*||^2$$

$$\begin{split} C(N) &= \max \text{imize} \quad \frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2} \\ &\text{subject to} \quad d \in \mathbb{N}^*, h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d), \\ &\quad x_0 \in \mathbb{R}^d, \ e_k \in \mathbb{R}^d \ \text{for } k = 0, \dots, N-1, \\ &\quad x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k) \ \text{for } k = 0, \dots, N-1, \\ &\quad 0 \in \partial h(x_*), \\ &\quad \|e_k\|^2 \leq \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2. \end{split}$$

Find smallest C(N) such that

$$h(x_N) - h(x_*) \leq C(N) ||x_0 - x_*||^2$$

for any execution of the method on all $h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$.

$$\begin{split} \mathcal{C}(N) &= & \text{maximize} \quad \frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2} \\ & \text{subject to} \quad d \in \mathbb{N}^*, \, h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d), \\ & & x_0 \in \mathbb{R}^d, \, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1, \\ & & x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k) \text{ for } k = 0, \dots, N-1, \\ & & 0 \in \partial h(x_*), \\ & & \|e_k\|^2 \leq \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2. \end{split}$$

Problem : Infinite dimensional

Find smallest C(N) such that

$$h(x_N) - h(x_*) \leq C(N) ||x_0 - x_*||^2$$

for any execution of the method on all $h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$.

$$\begin{split} \mathcal{C}(N) &= & \text{maximize} \quad \frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2} \\ & \text{subject to} \quad d \in \mathbb{N}^*, \, h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d), \\ & & x_0 \in \mathbb{R}^d, \, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1, \\ & & x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k) \text{ for } k = 0, \dots, N-1, \\ & & 0 \in \partial h(x_*), \\ & & \|e_k\|^2 \leq \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2. \end{split}$$

Problem : Infinite dimensional

Can be reformulated as SDP

$$C(N) = \max \min z \qquad \frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2}$$

subject to $d \in \mathbb{N}^*, h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d),$
 $x_0 \in \mathbb{R}^d, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1,$
 $x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k) \text{ for } k = 0, \dots, N-1,$
 $0 \in \partial h(x_*)$
 $\|e_k\|^2 \le \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2.$

$$C(N) = \max \min z \qquad \frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2}$$

subject to $d \in \mathbb{N}^*, h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d),$
 $x_0 \in \mathbb{R}^d, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1,$
 $x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k) \text{ for } k = 0, \dots, N-1,$
 $0 \in \partial h(x_*)$
 $\|e_k\|^2 \le \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2.$
$$C(N) = \max \min z \qquad \frac{h_N - h_*}{\|x_0 - x_*\|^2}$$

$$C(N) = \max \min e \quad \frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2}$$

subject to $d \in \mathbb{N}^*, h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d),$
 $x_0 \in \mathbb{R}^d, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1,$
 $x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k) \text{ for } k = 0, \dots, N-1,$
 $0 \in \partial h(x_*)$
 $\|e_k\|^2 \le \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2.$
$$C(N) = \max \min e \quad \frac{h_N - h_*}{\|x_0 - x_*\|^2}$$

subject to $d \in \mathbb{N}^*, \exists h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d) \text{ s.t. } h_i = h(x_i),$
 $g_i \in \partial h(x_i), \text{ for } i \in \{*, 0, \dots, N\},$
 $x_0 \in \mathbb{R}^d, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1,$

$$C(N) = \max \min e \quad \frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2}$$

subject to $d \in \mathbb{N}^*, h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d),$
 $x_0 \in \mathbb{R}^d, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1,$
 $x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k) \text{ for } k = 0, \dots, N-1,$
 $0 \in \partial h(x_*)$
 $\|e_k\|^2 \le \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2.$
$$C(N) = \max \min e \quad \frac{h_N - h_*}{\|x_0 - x_*\|^2}$$

subject to $d \in \mathbb{N}^*, \exists h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d) \text{ s.t. } h_i = h(x_i),$
 $g_i \in \partial h(x_i), \text{ for } i \in \{*, 0, \dots, N\},$
 $x_0 \in \mathbb{R}^d, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1,$
 $x_{k+1} = x_k - \lambda(g_{k+1} + e_k) \text{ for } k = 0, \dots, N-1,$
 $g_* = 0$

$$C(N) = \max \min e \quad \frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2}$$

subject to $d \in \mathbb{N}^*, h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d),$
 $x_0 \in \mathbb{R}^d, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1,$
 $x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k) \text{ for } k = 0, \dots, N-1,$
 $0 \in \partial h(x_*)$
 $\|e_k\|^2 \le \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2.$
$$C(N) = \max \operatorname{maximize} \quad \frac{h_N - h_*}{\|x_0 - x_*\|^2}$$

subject to $d \in \mathbb{N}^*, \exists h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d) \text{ s.t. } h_i = h(x_i),$
 $g_i \in \partial h(x_i), \text{ for } i \in \{*, 0, \dots, N\},$
 $x_0 \in \mathbb{R}^d, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1,$
 $x_{k+1} = x_k - \lambda(g_{k+1} + e_k) \text{ for } k = 0, \dots, N-1,$
 $g_* = 0$
 $\|e_k\|^2 \le \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2.$

$$C(N) = \max \min e \quad \frac{h(x_N) - h(x_*)}{\|x_0 - x_*\|^2}$$

subject to $d \in \mathbb{N}^*, h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d),$
 $x_0 \in \mathbb{R}^d, e_k \in \mathbb{R}^d$ for $k = 0, \dots, N - 1,$
 $x_{k+1} = x_k - \lambda(\partial h(x_{k+1}) + e_k)$ for $k = 0, \dots, N - 1$
 $0 \in \partial h(x_*)$
 $\|e_k\|^2 \le \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2.$
$$C(N) = \max \min e \quad \frac{h_N - h_*}{\|x_0 - x_*\|^2}$$

subject to $d \in \mathbb{N}^*, \exists h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$ s.t. $h_i = h(x_i),$
 $g_i \in \partial h(x_i),$ for $i \in \{*, 0, \dots, N\},$
 $x_0 \in \mathbb{R}^d, e_k \in \mathbb{R}^d$ for $k = 0, \dots, N - 1,$
 $x_{k+1} = x_k - \lambda(g_{k+1} + e_k)$ for $k = 0, \dots, N - 1,$
 $g_* = 0$
 $\|e_k\|^2 \le \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2.$

Finite number of function evaluations and subgradients

 \implies use interpolation (or extension) thms.

Convex interpolation

Given a set of triplets $S = \{(x_i, g_i, h_i)\}_i$

Convex interpolation

Given a set of triplets $S = \{(x_i, g_i, h_i)\}_i$

Convex interpolation:

$$\exists h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d) \text{ s.t. } h_i = h(x_i), g_i \in \partial h(x_i), \text{ for all } (x_i, g_i, h_i) \in S$$

equivalent to

Convex interpolation

Given a set of triplets $S = \{(x_i, g_i, h_i)\}_i$

Convex interpolation:

$$\exists h \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$$
 s.t. $h_i = h(x_i), g_i \in \partial h(x_i)$, for all $(x_i, g_i, h_i) \in S$

equivalent to

$$h_j \ge h_i + \langle g_i, x_j - x_i \rangle$$
, for all $(x_i, g_i, h_i), (x_j, g_j, h_j) \in S$

$$C(N) = \max \text{ maximize } \frac{h_N - h_*}{\|x_0 - x_*\|^2}$$

$$\begin{split} C(N) &= \max \text{maximize} \quad \frac{h_N - h_*}{\|x_0 - x_*\|^2} \\ &\text{subject to} \quad d \in \mathbb{N}^*, \\ &\quad x_0 \in \mathbb{R}^d, \ e_k \in \mathbb{R}^d \ \text{for } k = 0, \dots, N-1, \\ &\quad h_j \ge h_i + \langle g_i, x_j - x_i \rangle \ \text{for } i, j \in \{*, 0, \dots, N\}, \end{split}$$

$$\begin{split} \mathcal{C}(N) = & \text{maximize} \quad \frac{h_N - h_*}{\|x_0 - x_*\|^2} \\ & \text{subject to} \quad d \in \mathbb{N}^*, \\ & x_0 \in \mathbb{R}^d, \, e_k \in \mathbb{R}^d \text{ for } k = 0, \dots, N-1, \\ & h_j \geq h_i + \langle g_i, x_j - x_i \rangle \text{ for } i, j \in \{*, 0, \dots, N\}, \\ & x_{k+1} = x_k - \lambda(g_{k+1} + e_k) \text{ for } k = 0, \dots, N-1, \\ & g_* = 0, \\ & \|e_k\|^2 \leq \frac{\sigma^2}{\lambda^2} \|x_{k+1} - x_k\|^2. \end{split}$$
PEPs on a simple example

+ rescaling argument:

$$\begin{split} & \frac{h_i}{\|\mathbf{x}_0 - \mathbf{x}_*\|^2}, \frac{g_i}{\|\mathbf{x}_0 - \mathbf{x}_*\|}, \frac{x_i}{\|\mathbf{x}_0 - \mathbf{x}_*\|}, \frac{e_i}{\|\mathbf{x}_0 - \mathbf{x}_*\|} \text{ are still feasibles} \\ & \Longrightarrow \text{ we can set } \|\mathbf{x}_0 - \mathbf{x}_*\| = 1. \end{split}$$

PEPs on a simple example

+ rescaling argument: $\frac{h_i}{\|\mathbf{x}_0-\mathbf{x}_i\|^2}, \frac{g_i}{\|\mathbf{x}_0-\mathbf{x}_i\|}, \frac{x_i}{\|\mathbf{x}_0-\mathbf{x}_i\|}, \frac{e_i}{\|\mathbf{x}_0-\mathbf{x}_i\|}$ are still feasibles \implies we can set $||x_0 - x_*|| = 1$. C(N) =maximize $h_N - h_*$ subject to $d \in \mathbb{N}^*$, $x_0 \in \mathbb{R}^d$, $e_k \in \mathbb{R}^d$ for $k = 0, \ldots, N-1$, $h_i > h_i + \langle g_i, x_i - x_i \rangle$ for $i, j \in \{*, 0, \dots, N\}$, $x_{k+1} = x_k - \lambda(g_{k+1} + e_k)$ for $k = 0, \dots, N-1$, $g_* = 0.$ $||e_k||^2 \leq \frac{\sigma^2}{\lambda^2} ||x_{k+1} - x_k||^2$ $||x_0 - x_*||^2 = 1.$

PEPs on a simple example

+ rescaling argument: $\frac{h_i}{\|\mathbf{x}_0-\mathbf{x}_i\|^2}, \frac{g_i}{\|\mathbf{x}_0-\mathbf{x}_i\|}, \frac{x_i}{\|\mathbf{x}_0-\mathbf{x}_i\|}, \frac{e_i}{\|\mathbf{x}_0-\mathbf{x}_i\|}$ are still feasibles \implies we can set $||x_0 - x_*|| = 1$. $C(N) = \text{maximize} \quad h_N - h_*$ subject to $d \in \mathbb{N}^*$, $x_0 \in \mathbb{R}^d$, $e_k \in \mathbb{R}^d$ for $k = 0, \ldots, N-1$, $h_i > h_i + \langle g_i, x_i - x_i \rangle$ for $i, j \in \{*, 0, \dots, N\}$, $x_{k+1} = x_k - \lambda(g_{k+1} + e_k)$ for $k = 0, \dots, N-1$, $g_* = 0.$ $||e_k||^2 \leq \frac{\sigma^2}{\lambda^2} ||x_{k+1} - x_k||^2$ $||x_0 - x_*||^2 = 1.$

Problem is linear in h_i 's and in $\langle x, y \rangle$, with $x, y \in \{x_i\} \cup \{e_i\} \cup \{g_i\}$ \implies SDP reformulation.

Figure: Worst-case guarantees on C(N) bound on $[h(x_N) - h(x_*)]/||x_0 - x_*||^2$, as function of *N*. Left: $\lambda = 1$. Right: $\lambda = 10$.

Dashed curves: $N
ightarrow rac{1+\sigma}{4\lambda N\sqrt{1-\sigma^2}}$ (conjecture).

If objective and constraints are **affine** in function values $h(\cdot)$ or $h^*(\cdot)$ and in $\langle x, y \rangle$ with x, y some iterates or subgradients

 \implies

If objective and constraints are **affine** in function values $h(\cdot)$ or $h^*(\cdot)$ and in $\langle x, y \rangle$ with x, y some iterates or subgradients

 \implies

If objective and constraints are **affine** in function values $h(\cdot)$ or $h^*(\cdot)$ and in $\langle x, y \rangle$ with x, y some iterates or subgradients

problem can be reformulated as SDP

• Other method.

 \implies

If objective and constraints are **affine** in function values $h(\cdot)$ or $h^*(\cdot)$ and in $\langle x, y \rangle$ with x, y some iterates or subgradients

- Other method.
- Other objective criteria.

 \implies

If objective and constraints are **affine** in function values $h(\cdot)$ or $h^*(\cdot)$ and in $\langle x, y \rangle$ with x, y some iterates or subgradients

- Other method.
- Other objective criteria.
- Other inexactness criteria

 \implies

If objective and constraints are **affine** in function values $h(\cdot)$ or $h^*(\cdot)$ and in $\langle x, y \rangle$ with x, y some iterates or subgradients

- Other method.
- Other objective criteria.
- Other inexactness criteria

$$- \frac{x_k - x_{k+1}}{\lambda} \in \partial_{\varepsilon} h(x_{k+1}) \text{ with } \varepsilon \leq \dots$$

 \implies

If objective and constraints are **affine** in function values $h(\cdot)$ or $h^*(\cdot)$ and in $\langle x, y \rangle$ with x, y some iterates or subgradients

problem can be reformulated as SDP

- Other method.
- Other objective criteria.
- Other inexactness criteria

$$- rac{x_k - x_{k+1}}{\lambda} \in \partial_{arepsilon} h(x_{k+1}) ext{ with } arepsilon \leq \dots$$

- Primal-dual gap of proximal problem (Prox) $\leq \dots$

 \implies

If objective and constraints are **affine** in function values $h(\cdot)$ or $h^*(\cdot)$ and in $\langle x, y \rangle$ with x, y some iterates or subgradients

- Other method.
- Other objective criteria.
- Other inexactness criteria

$$- rac{x_k - x_{k+1}}{\lambda} \in \partial_{arepsilon} h(x_{k+1}) ext{ with } arepsilon \leq \dots$$

- Primal-dual gap of proximal problem (Prox) $\leq \dots$
- See paper for review of inexactness criteria.

$$x_{k+1} \approx \operatorname{prox}_{\underbrace{(1-\sigma^2)g}{L}}(x_k - \frac{1-\sigma^2}{L}\nabla f(x_k))$$

$$\begin{aligned} \left\| \begin{array}{l} x_{k+1} &\approx \operatorname{prox}_{\underbrace{(1-\sigma^2)g}{L}}(x_k - \frac{1-\sigma^2}{L}\nabla f(x_k)) \\ &\text{s.t} \left\| x_{k+1} - x_k + \frac{1-\sigma^2}{L}\nabla f(x_k) + \frac{1-\sigma^2}{L}\partial g(x_{k+1}) \right\|^2 \leq \sigma^2 \|x_{k+1} - x_k\|^2 \end{aligned}$$

$$\begin{cases} x_{k+1} &\approx \operatorname{prox}_{\underline{(1-\sigma^2)g}} \left(x_k - \frac{1-\sigma^2}{L} \nabla f(x_k) \right) \\ &\text{s.t } \left\| x_{k+1} - x_k + \frac{1-\sigma^2}{L} \nabla f(x_k) + \frac{1-\sigma^2}{L} \partial g(x_{k+1}) \right\|^2 \le \sigma^2 \|x_{k+1} - x_k\|^2 \end{cases}$$

Figure: Worst-case guarantees on $(h(x_N) - h_*)/||x_0 - x_*||^2$ as function of *N*.

$$\begin{cases} x_{k+1} &\approx \operatorname{prox}_{\underline{(1-\sigma^2)g}} \left(x_k - \frac{1-\sigma^2}{L} \nabla f(x_k) \right) \\ &\text{s.t } \left\| x_{k+1} - x_k + \frac{1-\sigma^2}{L} \nabla f(x_k) + \frac{1-\sigma^2}{L} \partial g(x_{k+1}) \right\|^2 \le \sigma^2 \|x_{k+1} - x_k\|^2 \end{cases}$$

Figure: Worst-case guarantees on $(h(x_N) - h_*)/||x_0 - x_*||^2$ as function of *N*.

Inexact proximal-gradient h = f + g, with $f \in \mathcal{F}_{0,L}(\mathbb{R}^d)$ and $g \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$, $y_0 = x_0$

$$\begin{cases} x_{k+1} &\approx \operatorname{prox}_{\underline{(1-\sigma^2)g}} \left(x_k - \frac{1-\sigma^2}{L} \nabla f(x_k) \right) \\ &\text{s.t } \left\| x_{k+1} - x_k + \frac{1-\sigma^2}{L} \nabla f(x_k) + \frac{1-\sigma^2}{L} \partial g(x_{k+1}) \right\|^2 \le \sigma^2 \|x_{k+1} - x_k\|^2 \end{cases}$$

Iterations N

Inexact proximal-gradient h = f + g, with $f \in \mathcal{F}_{0,L}(\mathbb{R}^d)$ and $g \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$, $y_0 = x_0$

$$\begin{cases} x_{k+1} &\approx \operatorname{prox}_{\underline{(1-\sigma^2)g}} \left(x_k - \frac{1-\sigma^2}{L} \nabla f(x_k) \right) \\ &\text{s.t } \left\| x_{k+1} - x_k + \frac{1-\sigma^2}{L} \nabla f(x_k) + \frac{1-\sigma^2}{L} \partial g(x_{k+1}) \right\|^2 \le \sigma^2 \|x_{k+1} - x_k\|^2 \end{cases}$$

Iterations N

Inexact proximal-gradient h = f + g, with $f \in \mathcal{F}_{0,L}(\mathbb{R}^d)$ and $g \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$, $y_0 = x_0$

$$\begin{cases} x_{k+1} &\approx \operatorname{prox}_{\underbrace{(1-\sigma^2)g}{L}}(x_k - \frac{1-\sigma^2}{L}\nabla f(x_k)) \\ &\text{s.t } \left\| x_{k+1} - x_k + \frac{1-\sigma^2}{L}\nabla f(x_k) + \frac{1-\sigma^2}{L}\partial g(x_{k+1}) \right\|^2 \le \sigma^2 \|x_{k+1} - x_k\|^2 \end{cases}$$

Iterations N

Inexact proximal-gradient h = f + g, with $f \in \mathcal{F}_{0,L}(\mathbb{R}^d)$ and $g \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$, $y_0 = x_0$

$$\begin{cases} x_{k+1} &\approx \operatorname{prox}_{\underbrace{(1-\sigma^2)g}{L}}(x_k - \frac{1-\sigma^2}{L}\nabla f(x_k)) \\ &\text{s.t } \left\| x_{k+1} - x_k + \frac{1-\sigma^2}{L}\nabla f(x_k) + \frac{1-\sigma^2}{L}\partial g(x_{k+1}) \right\|^2 \le \sigma^2 \|x_{k+1} - x_k\|^2 \end{cases}$$

Iterations N

$$\begin{cases} x_{k+1} \approx \operatorname{prox}_{g} (y_{k} - \frac{1}{L} \nabla f(y_{k})) \\ y_{k+1} = x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_{k}) \end{cases}$$

$$\begin{cases} x_{k+1} \approx \operatorname{prox}_{\underline{f}} (y_k - \frac{1}{L} \nabla f(y_k)) \\ y_{k+1} = x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k) \\ \text{s.t } \Phi_k(x_{k+1}) - \Phi_k(\operatorname{prox}_{\underline{f}} (y_k - \frac{1}{L} \nabla f(y_k))) \le \xi_{k+1}, \\ \text{with } \Phi_k(x) = \frac{1}{L} g(x) + \frac{1}{2} ||x - y_k + \frac{1}{L} \nabla f(y_k)||^2. \end{cases}$$

$$\begin{aligned} x_{k+1} &\approx \operatorname{prox}_{\underline{g}} \left(y_k - \frac{1}{L} \nabla f(y_k) \right) \\ y_{k+1} &= x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k) \\ &\text{s.t } \Phi_k(x_{k+1}) - \Phi_k(\operatorname{prox}_{\underline{g}} \left(y_k - \frac{1}{L} \nabla f(y_k) \right) \right) \leq \xi_{k+1}, \\ &\text{with } \Phi_k(x) = \frac{1}{L} g(x) + \frac{1}{2} \left\| x - y_k + \frac{1}{L} \nabla f(y_k) \right\|^2. \end{aligned}$$

Figure: Worst-case guarantees on $h(x_N) - h_*$ with initial condition $||x_0 - x_*||^2 \le 1$ and L = 1, as function of N.

$$\begin{aligned} x_{k+1} &\approx \operatorname{prox}_{\underline{f}}\left(y_k - \frac{1}{L}\nabla f(y_k)\right) \\ y_{k+1} &= x_{k+1} + \frac{k}{k+3}(x_{k+1} - x_k) \\ &\text{s.t } \Phi_k(x_{k+1}) - \Phi_k(\operatorname{prox}_{\underline{f}}\left(y_k - \frac{1}{L}\nabla f(y_k)\right)\right) \leq \xi_{k+1}, \\ &\text{with } \Phi_k(x) = \frac{1}{L}g(x) + \frac{1}{2} \left\|x - y_k + \frac{1}{L}\nabla f(y_k)\right\|^2. \end{aligned}$$

Figure: Worst-case guarantees on $h(x_N) - h_*$ with initial condition $||x_0 - x_*||^2 \le 1$ and L = 1, as function of N.

$$\begin{aligned} x_{k+1} &\approx \operatorname{prox}_{\underline{g}} \left(y_k - \frac{1}{L} \nabla f(y_k) \right) \\ y_{k+1} &= x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k) \\ &\text{s.t } \Phi_k(x_{k+1}) - \Phi_k(\operatorname{prox}_{\underline{g}} \left(y_k - \frac{1}{L} \nabla f(y_k) \right) \right) \leq \xi_{k+1}, \\ &\text{with } \Phi_k(x) = \frac{1}{L} g(x) + \frac{1}{2} \left\| x - y_k + \frac{1}{L} \nabla f(y_k) \right\|^2. \end{aligned}$$

Figure: Worst-case guarantees on $h(x_N) - h_*$ with initial condition $||x_0 - x_*||^2 \le 1$ and L = 1, as function of N.

$$\begin{aligned} x_{k+1} &\approx \operatorname{prox}_{\underline{f}}\left(y_k - \frac{1}{L}\nabla f(y_k)\right) \\ y_{k+1} &= x_{k+1} + \frac{k}{k+3}(x_{k+1} - x_k) \\ &\text{s.t } \Phi_k(x_{k+1}) - \Phi_k(\operatorname{prox}_{\underline{f}}\left(y_k - \frac{1}{L}\nabla f(y_k)\right)\right) \leq \xi_{k+1}, \\ &\text{with } \Phi_k(x) = \frac{1}{L}g(x) + \frac{1}{2} \left\|x - y_k + \frac{1}{L}\nabla f(y_k)\right\|^2. \end{aligned}$$

Figure: Worst-case guarantees on $h(x_N) - h_*$ with initial condition $||x_0 - x_*||^2 \le 1$ and L = 1, as function of N.

$$\begin{aligned} x_{k+1} &\approx \operatorname{prox}_{\frac{f}{L}}(y_k - \frac{1}{L}\nabla f(y_k)) \\ y_{k+1} &= x_{k+1} + \frac{k}{k+3}(x_{k+1} - x_k) \\ &\text{s.t } \Phi_k(x_{k+1}) - \Phi_k(\operatorname{prox}_{\frac{f}{L}}(y_k - \frac{1}{L}\nabla f(y_k))) \le \xi_{k+1}, \\ &\text{with } \Phi_k(x) = \frac{1}{L}g(x) + \frac{1}{2} \|x - y_k + \frac{1}{L}\nabla f(y_k)\|^2. \end{aligned}$$

Figure: Worst-case guarantees on $h(x_N) - h_*$ with initial condition $||x_0 - x_*||^2 \le 1$ and L = 1, as function of N.

$$\begin{aligned} x_{k+1} &\approx \operatorname{prox}_{\underline{g}} \left(y_k - \frac{1}{L} \nabla f(y_k) \right) \\ y_{k+1} &= x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k) \\ &\text{s.t } \Phi_k(x_{k+1}) - \Phi_k(\operatorname{prox}_{\underline{g}} \left(y_k - \frac{1}{L} \nabla f(y_k) \right) \right) \leq \xi_{k+1}, \\ &\text{with } \Phi_k(x) = \frac{1}{L} g(x) + \frac{1}{2} \left\| x - y_k + \frac{1}{L} \nabla f(y_k) \right\|^2. \end{aligned}$$

Figure: Worst-case guarantees on $h(x_N) - h_*$ with initial condition $||x_0 - x_*||^2 \le 1$ and L = 1, as function of N.

$$\begin{aligned} x_{k+1} &\approx \operatorname{prox}_{\underline{g}} \left(y_k - \frac{1}{L} \nabla f(y_k) \right) \\ y_{k+1} &= x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k) \\ &\text{s.t } \Phi_k(x_{k+1}) - \Phi_k(\operatorname{prox}_{\underline{g}} (y_k - \frac{1}{L} \nabla f(y_k))) \leq \xi_{k+1}, \\ &\text{with } \Phi_k(x) = \frac{1}{L} g(x) + \frac{1}{2} \left\| x - y_k + \frac{1}{L} \nabla f(y_k) \right\|^2. \end{aligned}$$

Figure: Worst-case guarantees on $h(x_N) - h_*$ with initial condition $||x_0 - x_*||^2 \le 1$ and L = 1, as function of N.

$$\begin{aligned} x_{k+1} &\approx \operatorname{prox}_{\underline{g}} \left(y_k - \frac{1}{L} \nabla f(y_k) \right) \\ y_{k+1} &= x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k) \\ &\text{s.t } \Phi_k(x_{k+1}) - \Phi_k(\operatorname{prox}_{\underline{g}} (y_k - \frac{1}{L} \nabla f(y_k))) \leq \xi_{k+1}, \\ &\text{with } \Phi_k(x) = \frac{1}{L} g(x) + \frac{1}{2} \left\| x - y_k + \frac{1}{L} \nabla f(y_k) \right\|^2. \end{aligned}$$

Figure: Worst-case guarantees on $h(x_N) - h_*$ with initial condition $||x_0 - x_*||^2 \le 1$ and L = 1, as function of N.
Inexact accelerated proximal-gradient (Schmidt, Le Roux & Bach, 2011), h = f + g, with $f \in \mathcal{F}_{0,L}(\mathbb{R}^d)$ and $g \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$, $y_0 = x_0$

$$\begin{aligned} x_{k+1} &\approx \operatorname{prox}_{\underline{g}} \left(y_k - \frac{1}{L} \nabla f(y_k) \right) \\ y_{k+1} &= x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k) \\ &\text{s.t } \Phi_k(x_{k+1}) - \Phi_k(\operatorname{prox}_{\underline{g}} (y_k - \frac{1}{L} \nabla f(y_k))) \leq \xi_{k+1}, \\ &\text{with } \Phi_k(x) = \frac{1}{L} g(x) + \frac{1}{2} \left\| x - y_k + \frac{1}{L} \nabla f(y_k) \right\|^2. \end{aligned}$$

Figure: Worst-case guarantees on $h(x_N) - h_*$ with initial condition $||x_0 - x_*||^2 \le 1$ and L = 1, as function of N.

Inexact accelerated proximal-gradient (Schmidt, Le Roux & Bach, 2011), h = f + g, with $f \in \mathcal{F}_{0,L}(\mathbb{R}^d)$ and $g \in \mathcal{F}_{0,\infty}(\mathbb{R}^d)$, $y_0 = x_0$

$$\begin{aligned} x_{k+1} &\approx \operatorname{prox}_{\underline{g}} \left(y_k - \frac{1}{L} \nabla f(y_k) \right) \\ y_{k+1} &= x_{k+1} + \frac{k}{k+3} (x_{k+1} - x_k) \\ &\text{s.t } \Phi_k(x_{k+1}) - \Phi_k(\operatorname{prox}_{\underline{g}} \left(y_k - \frac{1}{L} \nabla f(y_k) \right) \right) \leq \xi_{k+1} \\ &\text{with } \Phi_k(x) = \frac{1}{L} g(x) + \frac{1}{2} \left\| x - y_k + \frac{1}{L} \nabla f(y_k) \right\|^2. \end{aligned}$$

Figure: Worst-case guarantees on $h(x_N) - h_*$ with initial condition $||x_0 - x_*||^2 \le 1$ and L = 1, as function of N.

$$\begin{cases} x_k \approx \operatorname{prox}_{\lambda f}(z_k), \\ y_k = \operatorname{prox}_{\lambda g}(x_k - \lambda \nabla f(x_k)), \\ z_{k+1} = z_k + y_k - x_k \end{cases}$$

$$\begin{cases} x_k & \approx \operatorname{prox}_{\lambda f}(z_k), \\ y_k & = \operatorname{prox}_{\lambda g}(x_k - \lambda \nabla f(x_k)), \\ z_{k+1} & = z_k + y_k - x_k \\ & \text{s.t} \|x_k - z_k + \lambda \nabla f(x_k)\|^2 \le \sigma^2 \|y_k - z_k + \lambda \nabla f(x_k)\|^2. \end{cases}$$

$$\begin{cases} x_k &\approx \operatorname{prox}_{\lambda f}(z_k), \\ y_k &= \operatorname{prox}_{\lambda g}(x_k - \lambda \nabla f(x_k)), \\ z_{k+1} &= z_k + y_k - x_k \\ & \text{s.t} \|x_k - z_k + \lambda \nabla f(x_k)\|^2 \le \sigma^2 \|y_k - z_k + \lambda \nabla f(x_k)\|^2. \end{cases}$$

Figure: Worst-case guarantees on $||z_N - z_{N-1}||^2 / ||z_0 - \operatorname{prox}_{\lambda f}(x_*)||^2$, as function of *N*.

$$\begin{cases} x_k &\approx \operatorname{prox}_{\lambda f}(z_k), \\ y_k &= \operatorname{prox}_{\lambda g}(x_k - \lambda \nabla f(x_k)), \\ z_{k+1} &= z_k + y_k - x_k \\ & \text{s.t} \|x_k - z_k + \lambda \nabla f(x_k)\|^2 \le \sigma^2 \|y_k - z_k + \lambda \nabla f(x_k)\|^2. \end{cases}$$

Figure: Worst-case guarantees on $||z_N - z_{N-1}||^2 / ||z_0 - \operatorname{prox}_{\lambda f}(x_*)||^2$, as function of *N*.

$$\begin{cases} x_k &\approx \operatorname{prox}_{\lambda f}(z_k), \\ y_k &= \operatorname{prox}_{\lambda g}(x_k - \lambda \nabla f(x_k)), \\ z_{k+1} &= z_k + y_k - x_k \\ & \text{s.t} \|x_k - z_k + \lambda \nabla f(x_k)\|^2 \le \sigma^2 \|y_k - z_k + \lambda \nabla f(x_k)\|^2. \end{cases}$$

Figure: Worst-case guarantees on $||z_N - z_{N-1}||^2 / ||z_0 - \operatorname{prox}_{\lambda f}(x_*)||^2$, as function of *N*.

$$\begin{cases} x_k &\approx \operatorname{prox}_{\lambda f}(z_k), \\ y_k &= \operatorname{prox}_{\lambda g}(x_k - \lambda \nabla f(x_k)), \\ z_{k+1} &= z_k + y_k - x_k \\ & \text{s.t} \|x_k - z_k + \lambda \nabla f(x_k)\|^2 \le \sigma^2 \|y_k - z_k + \lambda \nabla f(x_k)\|^2. \end{cases}$$

Figure: Worst-case guarantees on $||z_N - z_{N-1}||^2 / ||z_0 - \operatorname{prox}_{\lambda f}(x_*)||^2$, as function of *N*.

$$\begin{cases} x_k &\approx \operatorname{prox}_{\lambda f}(z_k), \\ y_k &= \operatorname{prox}_{\lambda g}(x_k - \lambda \nabla f(x_k)), \\ z_{k+1} &= z_k + y_k - x_k \\ & \text{s.t} \|x_k - z_k + \lambda \nabla f(x_k)\|^2 \le \sigma^2 \|y_k - z_k + \lambda \nabla f(x_k)\|^2. \end{cases}$$

Figure: Worst-case guarantees on $||z_N - z_{N-1}||^2 / ||z_0 - \operatorname{prox}_{\lambda f}(x_*)||^2$, as function of *N*.

• Practical worst-case analyses of "Outer" algorithms (whatever subroutines for prox approximations)

- Practical worst-case analyses of "Outer" algorithms (whatever subroutines for prox approximations)
- PEPs can provide proofs.

- Practical worst-case analyses of "Outer" algorithms (whatever subroutines for prox approximations)
- PEPs can provide proofs.
- PEPs allow designing methods with optimized worst-case behaviors. (see ORI-PPA in the paper)

- Practical worst-case analyses of "Outer" algorithms (whatever subroutines for prox approximations)
- PEPs can provide proofs.
- PEPs allow designing methods with optimized worst-case behaviors. (see ORI-PPA in the paper)
- Can search for Lyapunov arguments in PEP \implies simpler proofs.

References I

M. Barré, A. Taylor, and F. Bach.

Principled analyses and design of first-order methods with inexact proximal operators. arXiv preprint arXiv:2006.06041, 2020.

Y. Drori and M. Teboulle.

Performance of first-order methods for smooth convex minimization: a novel approach. *Mathematical Programming*, 145(1-2):451-482, 2014.

J. Eckstein and W. Yao.

Relative-error approximate versions of Douglas–Rachford splitting and special cases of the ADMM.

Mathematical Programming, 170(2):417-444, 2018.

B. Martinet.

Détermination approchée d'un point fixe d'une application pseudo-contractante. cas de l'application prox.

Comptes rendus hebdomadaires des séances de l'Académie des sciences de Paris, 274:163–165, 1972.

R. T. Rockafellar.

Monotone operators and the proximal point algorithm. SIAM journal on control and optimization, 14(5):877–898, 1976.

M. Schmidt, N. Le Roux, and F. Bach.

Convergence rates of inexact proximal-gradient methods for convex optimization. In Advances in neural information processing systems (NIPS), pages 1458–1466, 2011.

References II

A. B. Taylor, J. M. Hendrickx, and F. Glineur.

Smooth strongly convex interpolation and exact worst-case performance of first-order methods. *Mathematical Programming*, 161(1-2):307–345, 2017.