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What is this work about?

Adaptive optimization strategy with smooth and strongly convex
objective based on Polyak steps.

(B. Polyak 1987), (Nedic & Bertsekas 2001), . . .

Computer-aided worst case analysis.
(Drori & Teboulle 2014), (Lessard, Recht & Packard 2016), (Taylor, Hendrickx & Glineur 2017),

and a few others.
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Polyak stepsizes

Famous stepsizes rule for solving the convex problem

f? = min
x∈Rd

f (x)

using gradient steps.

Iterates of the form xk+1 = xk − γk∇f (xk ). With γk = f (xk )−f?
‖∇f (xk )‖2

(Polyak step).
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Figure: Regularized logistic regression. Left: regularization parameter 10−7.
Right: regularization parameter 10−4.
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Performance Estimation approach on Polyak steps

For simplicity study the variant xk+1 = xk − γk∇f (xk ) , γk = 2 f (xk )−f?
‖∇f (xk )‖2

.

Looking for the smallest ρ ≥ 0 such that ‖xk+1 − x∗‖2 ≤ ρ‖xk − x∗‖2.

ρ := maximize
‖xk+1 − x∗‖2

‖xk − x∗‖2

subject to xk+1 = xk − 2 f (xk )−f∗
‖∇f (xk )‖2

∇f (xk ),

f ∈ Fµ,L, xk ∈ Rd , d ∈ N.

Problem : Infinite dimensional
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Performance Estimation approach on Polyak steps

Work with discrete version of f (Drori & Teboulle 2014), (Taylor, Hendrickx &
Glineur 2017).

Optimization problem can be relaxed and cast to a SDP.

ρ := maximize 1+ 4 fk−f∗
Gk

GXk
Xk

+ 4 (fk−f∗)
2

GkXk

subject to fk − f∗ + GXk + 1
2LGk + µ

2(1−µ
L
)

(
Xk + 2

L
GXk + 1

L2 Gk

)
≤ 0

f∗ − fk + 1
2LGk + µ

2(1−µ
L
)

(
Xk + 2

L
GXk + 1

L2 Gk

)
≤ 0(

Xk GXk

GXk Gk

)
< 0

in the variables Xk ,Gk ,GXk , fk , f∗ ∈ R.

Problem : nonlinear objective.

4



Performance Estimation approach on Polyak steps

Work with discrete version of f (Drori & Teboulle 2014), (Taylor, Hendrickx &
Glineur 2017).

Optimization problem can be relaxed and cast to a SDP.

ρ := maximize 1+ 4 fk−f∗
Gk

GXk
Xk

+ 4 (fk−f∗)
2

GkXk

subject to fk − f∗ + GXk + 1
2LGk + µ

2(1−µ
L
)

(
Xk + 2

L
GXk + 1

L2 Gk

)
≤ 0

f∗ − fk + 1
2LGk + µ

2(1−µ
L
)

(
Xk + 2

L
GXk + 1

L2 Gk

)
≤ 0(

Xk GXk

GXk Gk

)
< 0

in the variables Xk ,Gk ,GXk , fk , f∗ ∈ R.

Problem : nonlinear objective.

4



Performance Estimation approach on Polyak steps

Work with discrete version of f (Drori & Teboulle 2014), (Taylor, Hendrickx &
Glineur 2017).

Optimization problem can be relaxed and cast to a SDP.

ρ := maximize 1+ 4 fk−f∗
Gk

GXk
Xk

+ 4 (fk−f∗)
2

GkXk

subject to fk − f∗ + GXk + 1
2LGk + µ

2(1−µ
L
)

(
Xk + 2

L
GXk + 1

L2 Gk

)
≤ 0

f∗ − fk + 1
2LGk + µ

2(1−µ
L
)

(
Xk + 2

L
GXk + 1

L2 Gk

)
≤ 0(

Xk GXk

GXk Gk

)
< 0

in the variables Xk ,Gk ,GXk , fk , f∗ ∈ R.

Problem : nonlinear objective.

4



Performance Estimation approach on Polyak steps
Add γ = 2 fk−f?

Gk
as constraint.

For every step size value γ, we can solve the linear SDP

ρ(γ) := max. 1+ 2γGXk + 2(fk − f∗)γ

s.t. fk − f∗ + GXk + 1
2LGk + µ

2(1−µ
L
)

(
Xk + 2

L
GXk + 1

L2 Gk

)
≤ 0

f∗ − fk + 1
2LGk + µ

2(1−µ
L
)

(
Xk + 2

L
GXk + 1

L2 Gk

)
≤ 0(

Xk GXk

GXk Gk

)
< 0

Gkγ = 2(fk − f∗)

Note that ρ = maxγ ρ(γ).
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Figure: µ = 0.1 and L = 1.

(see the paper for an explicit expression of ρ(γ))
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Limit of worst case analysis
One can show ρ =

(
L−µ
L+µ

)2
.

Convergence rate ρ doesn’t explain why classical Polyak steps behave so well in pratice.
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Figure: Empirical distribution of stepsizes {γk}k . Left : Classical Polyak. Right :
Variant with extra 2.
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Accelerated algorithm with Polyak steps style momentum

Introduce strong convexity estimate in Accelerated gradient descent with momentum
(Nesterov 2018).

Algorithm 1 Accelerated gradient method with Polyak steps mo-
mentum

Input: x0 ∈ Rn, f∗ ∈ R, L smoothness constant.
y0 = x0,
for k ≥ 0 do
yk+1 = xk − 1

L∇f (xk)
µ̃k = ‖∇f (yk+1)‖2

2(f (yk+1)−f?) and βk =
√
L−
√
µ̃k√

L+
√
µ̃k

xk+1 = yk+1 + βk(yk+1 − yk)
end for
Output: yk+1
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Accelerated algorithm with Polyak steps style momentum

Complexity bounds (B.,Taylor,d’Aspremont 2020)

f (yN)− f∗ ≤ C
(
1+ 4

√
µ
L

)−N
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Figure: Numerical experiments on Musk Dataset.
Left : Linear reg. Middle : Log reg. Right : LASSO.
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Accelerated algorithm with Polyak steps style momentum

, Simple formulation, no tuning.

, Comes with complexity guarantees.

, Fast in practice.

/ 4√· in guaranteed rate instead of
√
· in convergence rate.

→ Might be artifact
from the proof’s form

/ Requires L.

→ Classical backtracking arguments do not apply as is.

// Requires knowledge of f?.

→ (i) Can do a 2 phases algorithm with ∼ 1− 1
2

4
√
µ
L
rate not using f∗ but not as fast

in practice.
→(ii) Can also use different estimates µ̃k that do not use f∗ with fast performances
but no accelerated rate yet.
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Conclusion

Why Polyak steps ?

Probably simplest adaptive algorithm

→ good start.

• Used Performance Estimation Program in the context of adaptive methods.

• Derive optimal bounds for gradient descent with Polyak steps.

• A step in the direction of (proved) simple and fully adaptive accelerated
algorithm.
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Thanks!

Happy to answer (almost live) questions

“Complexity Guarantess for Polyak Steps with Momentum”


