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Introduction

Tractable sparse recovery guarantees.

� The sparse recovery threshold of a given matrix is hard to compute.

� Probabilistic bounds on this threshold for classes of random matrices.

Today: Tractable proxy for sparse recovery threshold of deterministic matrices.
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Introduction

Given a signal sparse signal x ∈ Rn with n potentially very large,
we observe b ∈ Rm with m << n defined as follow

Introduction

Consider the following underdetermined linear system

n

m

A x =

=

b

where A 2 Rm⇥n, with n � m. Assuming the solution is sparse.

A. d’Aspremont Stanford, February 2011. 2/31

with A ∈ Rm×n full rank.
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Introduction

Solving the l0 problem is NP-hard. Relaxed as [Donoho and Tanner, 2005, Candès
and Tao, 2005]

minimize ‖u‖1
subject to Au = b

(l1)

Define k(A) such that (l1) recovers any signal x with Card(x) ≤ k(A).
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Outline

� A lower bound for sparse recovery threshold from M∗

� M∗ regularization in Dictionary Learning

� Greedy M∗ strategy for generating MRI sampling schemes
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Bound on recovery threshold

Theorem (Kashin and Temlyakov [2007, Th. 2.1])

Lower bound on k(A) Given a coding matrix A ∈ Rm×n, k(A) can be lower
bounded as follow

k(A) ≥ 1

S(A)2

with S(A) = sup
u 6=0

‖u‖2
‖u‖1

.

� S(A) = radius{K(A)} where K(A) , {u ∈ Rn : ‖u‖1 ≤ 1, Au = 0}.

� Approximating the radius of a convex polytope is a hard problem.

� Semidefinite relaxations e.g. only certify recovery of cardinality O(
√

k(A)).
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M∗ of a set

For K ⊂ Rn one defines M∗(K) as

M∗(K) , E

[
sup
x∈K
〈g, x〉

]
where g ∼ N (0, In)

Theorem (Pajor and Tomczak-Jaegermann [1986])

Low M∗ Given a set K ⊂ Rn and an q×n matrix G whose rows are independent
isotropic Gaussian random vectors in Rn, the radius of a section of K by the
nullspace of A satisfies

radius(K ∩N (G)) ≤ c√
q
M∗(K)

with probability 1− e−c′q, where c, c′ > 0 are absolute constants.

Apply this theorem to K(A) ?
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Recovery Threshold of Perturbed Matrix

� K(A) ∩N (G) = K(
[
A
G

]
) then taking K = K(A) in previous theorem leads to

Proposition B. and d’Aspremont [2018]

Threshold of perturbed matrix Let A ∈ Rm×n be a given matrix and G ∈ Rq×n
be a matrix with i.i.d. Gaussian coefficients. Suppose uLP solves

minimize ‖u‖1
subject to Au = Ax,

Gu = Gx,

in the variable u ∈ Rn, then with probability 1− e−c′q

k(

[
A
G

]
) ≥ c q

M∗(K(A))2

with c,c’ positive constants.
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Estimating M∗

� The previous theorem gives a lower bound on the recovery threshold of a
perturbed version of A, with M∗(A)−2 a proxy for k(A).

� Approximating

M∗(A) = E
g

 sup
Ax=0
‖x‖1≤1

〈g, x〉


by simulation involves solving multiple LPs.

Mathieu Barré FGS Nice, September 2019. 9/22



Outline

� A lower bound for sparse recovery threshold from M∗

� M∗ regularization in Dictionary Learning

� Greedy M∗ strategy for generating MRI sampling scheme
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Dictionary Learning setting

Observations Y ∈ Rn×m, sparsity target S. Find an over-complete dictionary
D ∈ Rn×p(n < p << m) and representation X ∈ Rp×m which minimize∑

i

||Yi −DXi||22 = ||Y −DX||2F .

with ||Xi||0 ≤ S.

� Classical normalization strategy is to impose ‖Di‖2 = 1.

� Solved with alternating minimization (e.g. KSVD [Elad and Aharon, 2006]).
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M∗ regularization

� Looking for a meaningful regularization strategy of dictionary learning.

� M∗(D) used as proxy for the quality of D as a sensing matrix.

� Optimize ||Y −DX||2F + λM∗(D) over X and D using alternate minimization
with stochastic gradient descent on D.

Lemma

SGD on M∗ The regularized function

νg(A) , sup. gTx+ λ
2 ||x||22 + σ

2 ||r||22
s.t. Ax+ r = 0

‖x‖1 ≤ 1
(P)

in the variables x ∈ Rn , r ∈ Rn−m, with λ, σ > 0, has gradient

∇νg(A) = y∗g(A)x
∗T
g (A),

where x∗g(A) and y∗g(A) are the primal and dual solutions of problem (P).
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Compression experiments
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Lower M∗ means larger K(D), i.e. better recovery performance.
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Inpainting setting

� Observations patches Y ∈ Rn×m and mask B ∈ {0, 1}n×m, only B � Y is
observed (i.e black holes on training images).

� Minimize ‖B � (Y −DX)‖2F with respect to X and D, same constraints
‖Xi‖0 ≤ S and ‖Di‖2 = 1.

� Weighted KSVD [Mairal et al., 2008]. Modified KSVD that tackles the
inpainting problem.

� Strong need to regularize, add M∗ penalization.
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Inpainting experiments

original with mask

W-KSVD PSRN:30.7898 k = 15 Mstar PSNR:30.9293 k = 15
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Inpainting experiments
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Figure 1: Heatmap of the average PSNR gap between
the M∗ penalized method and wKSVD with on x-axis
the training images and on y-axis the test images.

Remark : Penalizing the norm of the dictionary in some given random direction
also works well on the Inpainting problem.
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Outline

� A lower bound for sparse recovery threshold from M∗

� M∗ regularization in Dictionary Learning

� Greedy M∗ strategy for generating MRI sampling scheme
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MRI basic principle

� MRI recovers the density of matter in an object. Measures Fourier transform
of the the density through a magnetic field.

� Classical signal processing theory (Nyquist-Shannon) applies. But sampling on
a full regular grid in Fourier space is very time consuming.

� Compressed sensing allows to significantly reduce the number of measurements
required to recover the original signal by subsampling Fourier mesurements
[Lustig et al., 2008, Boyer et al., 2017].
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Density recovery

� Fourier coefficients can be measured along particular trajectories in Fourier
space.

� Trajectories should be chosen to be sampled efficiently by MRI machines.
[Boyer et al., 2017]

� Reconstructing the original image from the observations y involves solving

minimize ‖x‖1
subject to FH∗x = y

where F is the Fourier operator on the sub-sampled frequencies and H∗ is the
inverse wavelet transform operator.
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Generating good sampling scheme

Here, use spirals as trajectories in Fourier space.
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Here: use a greedy strategy based on the M∗ to choose a subset of spirals that
has good generic reconstruction properties.
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Experiments
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Figure 2: Comparaison between Greedy M* strategy
to select the right spirals compared to selecting it at
random.
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Conclusion

� Tractable proxy for the sparse recovery threshold associate to (l1).

� Measure generalization properties of a dictionary

� Use M∗ to select good sampling schemes in MRI.

Open problems.

� Dictionary Learning applications where M∗ regularization might be really
helpful, e.g.with images very different from natural images ?

� More realistic setting for MRI experiments.

� New M∗ applications.
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